如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O;
(2)直接写出△ABC与△A′B′C′的位似比_______
(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标._______;_______;_______
(本小题满分12分)如图所示,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离 (用含a的代数式表示)
如图,在每个小正方形的边长为1的网格中,点A, B, C, D均在格点上,点E, F分别为线段BC,DB上的动点,且BE =DF.
(Ⅰ)如图①,当BE =时,计算的值等于 ;
(Ⅱ)当取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置是如何找到的(不要求证明) .
如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.
(1)求证:△DOB∽△ACB;
(2)若AD平分∠CAB,求线段BD的长;
(3)当△AB′D为等腰三角形时,求线段BD的长.
如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.
(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;
(2)选择(1)中一对加以证明.
如图,在平面直角坐标系中放置一顶点为A,B,O的直角三角形,将此三角形绕原点O顺时针旋转90°得到△A1B1O.抛物线y=-x2+x+2经过A,B,B1三点.
(1)求直线A1B1的解析式;
(2)设点C是在抛物线上第一象限内的一点,△COB1的面积是△ABO面积的2倍,求C点坐标;
(3)线段AB上是否存在一点P,使以点P,A1,B为顶点的三角形与△ABO相似?若存在,请求出的值;若不存在,请说明理由.
如图,在
中,点
、
、
分别在
、
、
上,且
,
.
(1)如图1,当
时,图1中是否存在于
相等的线段?若存在,请找出并加以证明.若不存在说明理由.
(2)如图2,当
(其中
)时,若
,
,求
的长(用含
,
的式子表示).
如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动.过点Q作AC的垂线段QR,使QR=PQ,联接PR.当点Q到达A时,点P、Q同时停止运动.设PQ=x.△PQR和△ABC重合部分的面积为S.S关于x的函数图像如图2所示(其中0<x≤,<x≤m时,函数的解析式不同)
(1)填空:n的值为___________;
(2)求S关于x的函数关系式,并写出x的取值范围.
如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
如下图,路灯下,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN。
(1)试确定路灯的位置(用点P表示)。
(2)在图中画出表示大树高的线段。
(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树。
(1)如图1是某个多面体的表面展开图.
①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;
②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)
(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)
如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.
(1)当AD=CD时,求证DE∥AC;
(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?
如图,以O为圆心的度数为60 o,∠BOE=45o,DA⊥OB,EB⊥OB.
(1)求的值;
(2)若OE与交于点M,OC平分∠BOE,连接CM.说明:CM为⊙O的切线;
(3)在(2)的条件下,若BC=1,求tan∠BCO的值.
试题篮
()