优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2

(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标;
(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1
(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2

  • 题型:未知
  • 难度:未知

如图,点D,E在BC上,且FD∥AB,FE∥AC.
求证:△ABC∽△FDE.

  • 题型:未知
  • 难度:未知

如图,在四边形ABCD中,AD∥BC,AE=2EB,AD=2,BC=5,EF∥DC,交BC于点F,连接AF.

(1)求CF的长;
(2)若∠BFE=∠FAB,求AB的长.

  • 题型:未知
  • 难度:未知

如图,在四边形ABCD中,AB=AD,AC与BD相交于点E,∠ADB=∠ACB.

(1)求证:AD2=AE•AC;
(2)若AB⊥AC,CE=2AE,F是BC的中点,连接AF,判断△ABF的形状,并说明理由.

  • 题型:未知
  • 难度:未知

在如图的方格中,△OAB的顶点坐标分别为O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1与△OAB是关于点P为位似中心的位似图形.

(1)在图中标出位似中心P的位置,并写出点的坐标及△O1A1B1与△OAB的相似比;
(2)以原点O为位似中心,在y轴的左侧画出△OAB的一个位似△OA2B2,使它与△OAB的位似比为2:1,并写出点B的对应点B2的坐标;
(3)在(2)条件下,若点M(a,b)是△OAB边上一点(不与顶点重合),写出M在△OA2B2中的对应点M2的坐标.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.

(1)求运动时间t的取值范围;
(2)t为何值时,△POQ的面积最大?最大值是多少?
(3)t为何值时,以点P、0、Q为顶点的三角形与Rt△AOB相似?

  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠BAC=2∠C.

(1)在图中作出△ABC的内角平分线AD.(要求:尺规作图,保留作图痕迹,不写证明)
(2)在已作出的图形中,写出一对相似三角形,并说明理由.

  • 题型:未知
  • 难度:未知

如图,AB为⊙O的直径,劣弧,BD∥CE,连接AE并延长交BD于D.求证:

(1)AC=AE;
(2)AB2=AC•AD.

  • 题型:未知
  • 难度:未知

如图,正三角形ABC内接于⊙O,P是上的一点,且于E,点F是延长线上的点,

(1)求证
(2)求证
(3)求的长.

  • 题型:未知
  • 难度:未知

如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连结AC.求证:△ABC∽△POA.

  • 题型:未知
  • 难度:未知

在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.
(1)当点O为AC中点时:
①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系(无需证明);
②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的结论是否成立.若成立,请证明;若不成立,请说明理由;
(2)当点O不是AC中点时,如图3,三角板的两直角边分别交AB,BC于E、F两点,若,则     

  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.

(1)如图①,当∠ABC=45°时,求证:AD=DE;
(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;
(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)

  • 题型:未知
  • 难度:未知

如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A1B1C1

(1)△ABC与△A1B1C1的位似比等于    
(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2
(3)请写出△A1B1C1是由△A2B2C2怎样平移得到的?
(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为                           

  • 题型:未知
  • 难度:未知

两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).

(1)当点C落在边EF上时,x=       cm;
(2)求y关于x的函数解析式,并写出自变量x的取值范围;
(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.

  • 题型:未知
  • 难度:未知

如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.

(1)AB=CD;
(2)DP•BD=AD•BC;
(3)

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题