优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质 / 解答题
初中数学

如图, ΔABC O 的内接三角形,过点 C O 的切线交 BA 的延长线于点 F AE O 的直径,连接 EC

(1)求证: ACF = B

(2)若 AB = BC AD BC 于点 D FC = 4 FA = 2 ,求 AD AE 的值.

来源:2021年四川省泸州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AE 平分 BAC BC 于点 E ,点 D AB 上, DE AE O Rt Δ ADE 的外接圆,交 AC 于点 F

(1)求证: BC O 的切线;

(2)若 O 的半径为5, AC = 8 ,求 S ΔBDE

来源:2021年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, ADC = B = 90 ° ,过点 D DE AB E ,若 DE = BE

(1)求证: DA = DC

(2)连接 AC DE 于点 F ,若 ADE = 30 ° AD = 6 ,求 DF 的长.

来源:2021年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

在等腰 ΔABC 中, AB = AC ,点 D BC 边上一点(不与点 B C 重合),连结 AD

(1)如图1,若 C = 60 ° ,点 D 关于直线 AB 的对称点为点 E ,连结 AE DE ,则 BDE =   

(2)若 C = 60 ° ,将线段 AD 绕点 A 顺时针旋转 60 ° 得到线段 AE ,连结 BE

①在图2中补全图形;

②探究 CD BE 的数量关系,并证明;

(3)如图3,若 AB BC = AD DE = k ,且 ADE = C .试探究 BE BD AC 之间满足的数量关系,并证明.

来源:2021年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中, ACB = 90 ° AC = BC ,点 D AB 边上一点(含端点 A B ) ,过点 B BE 垂直于射线 CD ,垂足为 E ,点 F 在射线 CD 上,且 EF = BE ,连接 AF BF

(1)求证: ΔABF ΔCBE

(2)如图2,连接 AE ,点 P M N 分别为线段 AC AE EF 的中点,连接 PM MN PN .求 PMN 的度数及 MN PM 的值;

(3)在(2)的条件下,若 BC = 2 ,直接写出 ΔPMN 面积的最大值.

来源:2021年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° AD BAC 的平分线,以 AD 为直径的 O AB 边于点 E ,连接 CE ,过点 D DF / / CE ,交 AB 于点 F

(1)求证: DF O 的切线;

(2)若 BD = 5 sin B = 3 5 ,求线段 DF 的长.

来源:2021年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, E DC 边的中点,连接 AE ,若 AE 的延长线和 BC 的延长线相交于点 F

(1)求证: BC = CF

(2)连接 AC BE 相交于点为 G ,若 ΔGEC 的面积为2,求平行四边形 ABCD 的面积.

来源:2021年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB是⊙ O的直径,点 F在⊙ O上,∠ BAF的平分线 AE交⊙ O于点 E,过点 E ED AF ,交 AF的延长线于点 D,延长 DEAB相交于点 C

(1)求证: CD是⊙ O的切线;

(2)若⊙ O的半径为5, tan EAD = 1 2 ,求 BC的长.

来源:2021年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:

【观察与猜想】

(1)如图1,在正方形 ABCD 中,点 E F 分别是 AB AD 上的两点,连接 DE CF DE CF ,则 DE CF 的值为   

(2)如图2,在矩形 ABCD 中, AD = 7 CD = 4 ,点 E AD 上的一点,连接 CE BD ,且 CE BD ,则 CE BD 的值为   

【类比探究】

(3)如图3,在四边形 ABCD 中, A = B = 90 ° ,点 E AB 上一点,连接 DE ,过点 C DE 的垂线交 ED 的延长线于点 G ,交 AD 的延长线于点 F ,求证: DE AB = CF AD

【拓展延伸】

(4)如图4,在 Rt Δ ABD 中, BAD = 90 ° AD = 9 tan ADB = 1 3 ,将 ΔABD 沿 BD 翻折,点 A 落在点 C 处得 ΔCBD ,点 E F 分别在边 AB AD 上,连接 DE CF DE CF

①求 DE CF 的值;

②连接 BF ,若 AE = 1 ,写出 BF 的长度.

来源:2021年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点,连接 AC BC D AB 延长线上一点,连接 CD ,且 BCD = A

(1)求证: CD O 的切线;

(2)若 O 的半径为 5 ΔABC 的面积为 2 5 ,求 CD 的长;

(3)在(2)的条件下, E O 上一点,连接 CE 交线段 OA 于点 F ,若 EF CF = 1 2 ,求 BF 的长.

来源:2021年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AD / / BC ABC = 90 ° AD = CD O 是对角线 AC 的中点,联结 BO 并延长交边 CD 或边 AD 于点 E

(1)当点 E CD 上,

①求证: ΔDAC ΔOBC

②若 BE CD ,求 AD BC 的值;

(2)若 DE = 2 OE = 3 ,求 CD 的长.

来源:2021年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 + 2 x + 8 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C

(1)求点 B C 的坐标;

(2)设点 C ' 与点 C 关于该抛物线的对称轴对称.在 y 轴上是否存在点 P ,使 ΔPCC ' ΔPOB 相似,且 PC PO 是对应边?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 E F O 上,且 BF ̂ = 2 BE ̂ ,连接 OE AF ,过点 B O 的切线,分别与 OE AF 的延长线交于点 C D

(1)求证: COB = A

(2)若 AB = 6 CB = 4 ,求线段 FD 的长.

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

阅读与思考

请阅读下列科普材料,并完成相应的任务.

图算法

图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系: F = 9 5 C + 32 得出,当 C = 10 时, F = 50 .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种根据特制的线条进行计算的方法就是图算法.

再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?

我们可以根据公式 1 R = 1 R 1 + 1 R 2 求得 R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个 120 ° 的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.

图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.

任务:

(1)请根据以上材料简要说明图算法的优越性;

(2)请用以下两种方法验证第二个例子中图算法的正确性:

①用公式 1 R = 1 R 1 + 1 R 2 计算:当 R 1 = 7 . 5 R 2 = 5 时, R 的值为多少;

②如图,在 ΔAOB 中, AOB = 120 ° OC ΔAOB 的角平分线, OA = 7 . 5 OB = 5 ,用你所学的几何知识求线段 OC 的长.

来源:2021年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, O ΔABC 的外接圆,点 O BC 边上, BAC 的平分线交 O 于点 D ,连接 BD CD ,过点 D O 的切线与 AC 的延长线交于点 P

(1)求证: DP / / BC

(2)求证: ΔABD ΔDCP

(3)当 AB = 5 cm AC = 12 cm 时,求线段 PC 的长.

来源:2021年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题