优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质 / 解答题
初中数学

如图1,点 C 是半圆 O 的直径 AB 上一动点(不包括端点), AB = 6 cm ,过点 C CD AB 交半圆于点 D ,连结 AD ,过点 C CE / / AD 交半圆于点 E ,连结 EB .牛牛想探究在点 C 运动过程中 EC EB 的大小关系.他根据学习函数的经验,记 AC = xcm EC = y 1 cm EB = y 2 cm .请你一起参与探究函数 y 1 y 2 随自变量 x 变化的规律.

通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象.

x

0.30

0.80

1.60

2.40

3.20

4.00

4.80

5.60

y 1

2.01

2.98

3.46

3.33

2.83

2.11

1.27

0.38

y 2

5.60

4.95

3.95

2.96

2.06

1.24

0.57

0.10

(1)当 x = 3 时, y 1 =   

(2)在图2中画出函数 y 2 的图象,并结合图象判断函数值 y 1 y 2 的大小关系.

(3)由(2)知" AC 取某值时,有 EC = EB ".如图3,牛牛连结了 OE ,尝试通过计算 EC EB 的长来验证这一结论,请你完成计算过程.

来源:2021年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

【证明体验】

(1)如图1, AD ΔABC 的角平分线, ADC = 60 ° ,点 E AB 上, AE = AC .求证: DE 平分 ADB

【思考探究】

(2)如图2,在(1)的条件下, F AB 上一点,连结 FC AD 于点 G .若 FB = FC DG = 2 CD = 3 ,求 BD 的长.

【拓展延伸】

(3)如图3,在四边形 ABCD 中,对角线 AC 平分 BAD BCA = 2 DCA ,点 E AC 上, EDC = ABC .若 BC = 5 CD = 2 5 AD = 2 AE ,求 AC 的长.

来源:2021年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,锐角三角形 ABC 内接于 O BAC 的平分线 AG O 于点 G ,交 BC 边于点 F ,连接 BG

(1)求证: ΔABG ΔAFC

(2)已知 AB = a AC = AF = b ,求线段 FG 的长(用含 a b 的代数式表示).

(3)已知点 E 在线段 AF 上(不与点 A ,点 F 重合),点 D 在线段 AE 上(不与点 A ,点 E 重合), ABD = CBE ,求证: B G 2 = GE GD

来源:2021年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 C O 上异于 A B 的点,连接 AC BC ,点 D BA 的延长线上,且 DCA = ABC ,点 E DC 的延长线上,且 BE DC

(1)求证: DC O 的切线;

(2)若 OA OD = 2 3 BE = 3 ,求 DA 的长.

来源:2021年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 D 在以 AB 为直径的 O 上,过 D O 的切线交 AB 延长线于点 C AE CD 于点 E ,交 O 于点 F ,连接 AD FD

(1)求证: DAE = DAC

(2)求证: DF AC = AD DC

(3)若 sin C = 1 4 AD = 4 10 ,求 EF 的长.

来源:2021年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在四边形 ABCD 中, ABC = BCD ,点 E 在边 BC 上,且 AE / / CD DE / / AB ,作 CF / / AD 交线段 AE 于点 F ,连接 BF

(1)求证: ΔABF ΔEAD

(2)如图2.若 AB = 9 CD = 5 ECF = AED ,求 BE 的长;

(3)如图3,若 BF 的延长线经过 AD 的中点 M ,求 BE EC 的值.

来源:2021年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

如图1, D O 上一点,点 C 在直径 BA 的延长线上,且 CDA = CBD

(1)判断直线 CD O 的位置关系,并说明理由;

(2)若 tan ADC = 1 2 AC = 2 ,求 O 的半径;

(3)如图2,在(2)的条件下, ADB 的平分线 DE O 于点 E ,交 AB 于点 F ,连结 BE .求 sin DBE 的值.

来源:2021年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 E 在正方形 ABCD AD 上,点 F 是线段 AB 上的动点(不与点 A 重合), DF AC 于点 G GH AD 于点 H AB = 1 DE = 1 3

(1)求 tan ACE

(2)设 AF = x GH = y ,试探究 y x 的函数关系式(写出 x 的取值范围);

(3)当 ADF = ACE 时,判断 EG AC 的位置关系并说明理由.

来源:2021年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形,过点 C O 的切线交 BA 的延长线于点 F AE O 的直径,连接 EC

(1)求证: ACF = B

(2)若 AB = BC AD BC 于点 D FC = 4 FA = 2 ,求 AD AE 的值.

来源:2021年四川省泸州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AE 平分 BAC BC 于点 E ,点 D AB 上, DE AE O Rt Δ ADE 的外接圆,交 AC 于点 F

(1)求证: BC O 的切线;

(2)若 O 的半径为5, AC = 8 ,求 S ΔBDE

来源:2021年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

在等腰 ΔABC 中, AB = AC ,点 D BC 边上一点(不与点 B C 重合),连结 AD

(1)如图1,若 C = 60 ° ,点 D 关于直线 AB 的对称点为点 E ,连结 AE DE ,则 BDE =   

(2)若 C = 60 ° ,将线段 AD 绕点 A 顺时针旋转 60 ° 得到线段 AE ,连结 BE

①在图2中补全图形;

②探究 CD BE 的数量关系,并证明;

(3)如图3,若 AB BC = AD DE = k ,且 ADE = C .试探究 BE BD AC 之间满足的数量关系,并证明.

来源:2021年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中, ACB = 90 ° AC = BC ,点 D AB 边上一点(含端点 A B ) ,过点 B BE 垂直于射线 CD ,垂足为 E ,点 F 在射线 CD 上,且 EF = BE ,连接 AF BF

(1)求证: ΔABF ΔCBE

(2)如图2,连接 AE ,点 P M N 分别为线段 AC AE EF 的中点,连接 PM MN PN .求 PMN 的度数及 MN PM 的值;

(3)在(2)的条件下,若 BC = 2 ,直接写出 ΔPMN 面积的最大值.

来源:2021年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB是⊙ O的直径,点 F在⊙ O上,∠ BAF的平分线 AE交⊙ O于点 E,过点 E ED AF ,交 AF的延长线于点 D,延长 DEAB相交于点 C

(1)求证: CD是⊙ O的切线;

(2)若⊙ O的半径为5, tan EAD = 1 2 ,求 BC的长.

来源:2021年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:

【观察与猜想】

(1)如图1,在正方形 ABCD 中,点 E F 分别是 AB AD 上的两点,连接 DE CF DE CF ,则 DE CF 的值为   

(2)如图2,在矩形 ABCD 中, AD = 7 CD = 4 ,点 E AD 上的一点,连接 CE BD ,且 CE BD ,则 CE BD 的值为   

【类比探究】

(3)如图3,在四边形 ABCD 中, A = B = 90 ° ,点 E AB 上一点,连接 DE ,过点 C DE 的垂线交 ED 的延长线于点 G ,交 AD 的延长线于点 F ,求证: DE AB = CF AD

【拓展延伸】

(4)如图4,在 Rt Δ ABD 中, BAD = 90 ° AD = 9 tan ADB = 1 3 ,将 ΔABD 沿 BD 翻折,点 A 落在点 C 处得 ΔCBD ,点 E F 分别在边 AB AD 上,连接 DE CF DE CF

①求 DE CF 的值;

②连接 BF ,若 AE = 1 ,写出 BF 的长度.

来源:2021年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点,连接 AC BC D AB 延长线上一点,连接 CD ,且 BCD = A

(1)求证: CD O 的切线;

(2)若 O 的半径为 5 ΔABC 的面积为 2 5 ,求 CD 的长;

(3)在(2)的条件下, E O 上一点,连接 CE 交线段 OA 于点 F ,若 EF CF = 1 2 ,求 BF 的长.

来源:2021年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题