优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质 / 解答题
初中数学

ΔABC 中, ACB = 90 ° AC BC = m D 是边 BC 上一点,将 ΔABD 沿 AD 折叠得到 ΔAED ,连接 BE

(1)特例发现

如图1,当 m = 1 AE 落在直线 AC 上时.

①求证: DAC = EBC

②填空: CD CE 的值为   

(2)类比探究

如图2,当 m 1 AE 与边 BC 相交时,在 AD 上取一点 G ,使 ACG = BCE CG AE 于点 H .探究 CG CE 的值(用含 m 的式子表示),并写出探究过程;

(3)拓展运用

在(2)的条件下,当 m = 2 2 D BC 的中点时,若 EB EH = 6 ,求 CG 的长.

来源:2021年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

问题提出

如图(1),在 ΔA BC ΔDEC 中, ACB = DCE = 90 ° BC = AC EC = DC ,点 E ΔABC 内部,直线 AD BE 于点 F .线段 AF BF CF 之间存在怎样的数量关系?

问题探究

(1)先将问题特殊化如图(2),当点 D F 重合时,直接写出一个等式,表示 AF BF CF 之间的数量关系;

(2)再探究一般情形如图(1),当点 D F 不重合时,证明(1)中的结论仍然成立.

问题拓展

如图(3),在 ΔABC ΔDEC 中, ACB = DCE = 90 ° BC = kAC EC = kDC ( k 是常数),点 E ΔABC 内部,直线 AD BE 交于点 F .直接写出一个等式,表示线段 AF BF CF 之间的数量关系.

来源:2021年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC = 90 ° ,点 E BC 边上,过 A C E 三点的 O AB 边于另一点 F ,且 F AE ̂ 的中点, AD O 的一条直径,连接 DE 并延长交 AB 边于 M 点.

(1)求证:四边形 CDMF 为平行四边形;

(2)当 CD = 2 5 AB 时,求 sin ACF 的值.

来源:2021年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AOB = 90 ° O AB 相交于点 C ,与 AO 相交于点 E ,连接 CE ,已知 AOC = 2 ACE

(1)求证: AB O 的切线;

(2)若 AO = 20 BO = 15 ,求 CE 的长.

来源:2021年湖北省恩施州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 相交于点 D DE AC ,垂足为 E

(1)求证: DE O 的切线;

(2)若弦 MN 垂直于 AB ,垂足为 G AG AB = 1 4 MN = 3 ,求 O 的半径;

(3)在(2)的条件下,当 BAC = 36 ° 时,求线段 CE 的长.

来源:2021年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径. BC O 的弦,弦 ED 垂直 AB 于点 F ,交 BC 于点 G .过点 C O 的切线交 ED 的延长线于点 P

(1)求证: PC = PG

(2)判断 P G 2 = PD PE 是否成立?若成立,请证明该结论;

(3)若 G BC 中点, OG = 5 sin B = 5 5 ,求 DE 的长.

来源:2021年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在正方形 ABCD 中,点 E 是边 BC 上一点,且点 E 不与点 B C 重合,点 F BA 的延长线上一点,且 AF = CE

(1)求证: ΔDCE ΔDAF

(2)如图2,连接 EF ,交 AD 于点 K ,过点 D DH EF ,垂足为 H ,延长 DH BF 于点 G ,连接 HB HC

①求证: HD = HB

②若 DK HC = 2 ,求 HE 的长.

来源:2021年海南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 内接于 O AB O 的直径, CAB 的平分线交 BC 于点 D ,交 O 于点 E ,连接 EB ,作 BEF = CAE ,交 AB 的延长线于点 F

(1)求证: EF O 的切线;

(2)若 BF = 10 EF = 20 ,求 O 的半径和 AD 的长.

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 中, AD / / BC AD AB AD = AB = 1 DC = 5 ,以 A 为圆心, AD 为半径作圆,延长 CD A 于点 F ,延长 DA A 于点 E ,连结 BF ,交 DE 于点 G

(1)求证: BC A 的切线;

(2)求 cos EDF 的值;

(3)求线段 BG 的长.

来源:2021年广西柳州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° D AB 上的一点,以 AD 为直径的 O BC 相切于点 E ,连接 AE DE

(1)求证: AE 平分 BAC

(2)若 B = 30 ° ,求 CE DE 的值.

来源:2021年广西贺州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, E F 为边 AB 上的两个三等分点,点 A 关于 DE 的对称点为 A ' AA ' 的延长线交 BC 于点 G

(1)求证: DE / / A ' F

(2)求 GA ' B 的大小;

(3)求证: A ' C = 2 A ' B

来源:2021年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, O ΔABC 的外接圆, AD O 的直径, AD BC 于点 E

(1)求证: BAD = CAD

(2)连接 BO 并延长,交 AC 于点 F ,交 O 于点 G ,连接 GC .若 O 的半径为5, OE = 3 ,求 GC OF 的长.

来源:2021年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

发现规律

(1)如图①, ΔABC ΔADE 都是等边三角形,直线 BD CE 交于点 F .直线 BD AC 交于点 H .求 BFC 的度数.

(2)已知: ΔABC ΔADE 的位置如图②所示,直线 BD CE 交于点 F .直线 BD AC 交于点 H .若 ABC = ADE = α ACB = AED = β ,求 BFC 的度数.

应用结论

(3)如图③,在平面直角坐标系中,点 O 的坐标为 ( 0 , 0 ) ,点 M 的坐标为 ( 3 , 0 ) N y 轴上一动点,连接 MN .将线段 MN 绕点 M 逆时针旋转 60 ° 得到线段 MK ,连接 NK OK .求线段 OK 长度的最小值.

来源:2020年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, A = C = 90 ° DE BF 分别平分 ADC ABC ,并交线段 AB CD 于点 E F (点 E B 不重合).在线段 BF 上取点 M N (点 M BN 之间),使 BM = 2 FN .当点 P 从点 D 匀速运动到点 E 时,点 Q 恰好从点 M 匀速运动到点 N .记 QN = x PD = y ,已知 y = - 6 5 x + 12 ,当 Q BF 中点时, y = 24 5

(1)判断 DE BF 的位置关系,并说明理由.

(2)求 DE BF 的长.

(3)若 AD = 6

①当 DP = DF 时,通过计算比较 BE BQ 的大小关系.

②连结 PQ ,当 PQ 所在直线经过四边形 ABCD 的一个顶点时,求所有满足条件的 x 的值.

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,矩形 DEFG 中, DG = 2 DE = 3 Rt Δ ABC 中, ACB = 90 ° CA = CB = 2 FG BC 的延长线相交于点 O ,且 FG BC OG = 2 OC = 4 .将 ΔABC 绕点 O 逆时针旋转 α ( 0 ° α < 180 ° ) 得到△ A ' B ' C '

(1)当 α = 30 ° 时,求点 C ' 到直线 OF 的距离.

(2)在图1中,取 A ' B ' 的中点 P ,连结 C ' P ,如图2.

①当 C ' P 与矩形 DEFG 的一条边平行时,求点 C ' 到直线 DE 的距离.

②当线段 A ' P 与矩形 DEFG 的边有且只有一个交点时,求该交点到直线 DG 的距离的取值范围.

来源:2020年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题