已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
如图,在边长为1的正方形 中,动点 、 分别在边 、 上,将正方形 沿直线 折叠,使点 的对应点 始终落在边 上(点 不与点 、 重合),点 落在点 处, 与 交于点 ,设 .
(1)当 时,求 的值;
(2)随着点 在边 上位置的变化, 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;
(3)设四边形 的面积为 ,求 与 之间的函数表达式,并求出 的最小值.
如图①,直线 表示一条东西走向的笔直公路,四边形 是一块边长为100米的正方形草地,点 , 在直线 上,小明从点 出发,沿公路 向西走了若干米后到达点 处,然后转身沿射线 方向走到点 处,接着又改变方向沿射线 方向走到公路 上的点 处,最后沿公路 回到点 处.设 米(其中 , 米,已知 与 之间的函数关系如图②所示,
(1)求图②中线段 所在直线的函数表达式;
(2)试问小明从起点 出发直至最后回到点 处,所走过的路径(即 是否可以是一个等腰三角形?如果可以,求出相应 的值;如果不可以,说明理由.
在数学兴趣小组活动中,小亮进行数学探究活动. 是边长为2的等边三角形, 是 上一点,小亮以 为边向 的右侧作等边三角形 ,连接 .
(1)如图1,当点 在线段 上时, 、 相交于点 ,小亮发现有两个三角形全等,请你找出来,并证明.
(2)当点 在线段 上运动时,点 也随着运动,若四边形 的面积为 ,求 的长.
(3)如图2,当点 在 的延长线上运动时, 、 相交于点 ,请你探求 的面积 与 的面积 之间的数量关系.并说明理由.
(4)如图2,当 的面积 时,求 的长.
如图,已知 为锐角 内部一点,过点 作 于点 , 于点 ,以 为直径作 ,交直线 于点 ,连接 , , 交 于点 .
(1)求证: .
(2)连接 , ,当 , 时,在点 的整个运动过程中.
①若 ,求 的长.
②若 为等腰三角形,求所有满足条件的 的长.
(3)连接 , , 交 于点 ,当 , 时,记 的面积为 , 的面积为 ,请写出 的值.
如图, 是 的内接三角形,点 在 上,点 在弦 上 不与 重合),且四边形 为菱形.
(1)求证: ;
(2)求证: ;
(3)已知 的半径为3.
①若 ,求 的长;
②当 为何值时, 的值最大?
如图1,直线 与 轴交于点 ,与 轴交于点 ,点 是线段 上一动点 .以点 为圆心, 长为半径作 交 轴于另一点 ,交线段 于点 ,连接 并延长交 于点 .
(1)求直线 的函数表达式和 的值;
(2)如图2,连接 ,当 时,
①求证: ;
②求点 的坐标;
(3)当点 在线段 上运动时,求 的最大值.
在 中, , .点 在直线 上,以 , 为边作矩形 ,直线 与直线 , 的交点分别为 , .
(1)如图,点 在线段 上,四边形 是正方形.
①若点 为 的中点,求 的长.
②若 ,求 的长.
(2)已知 ,是否存在点 ,使得 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.
已知, 中, , 是 边上一点,作 ,分别交边 , 于点 , .
(1)若 (如图 ,求证: .
(2)若 ,过点 作 ,交 (或 的延长线)于点 .试猜想:线段 , 和 之间的数量关系,并就 情形(如图 说明理由.
(3)若点 与 重合(如图 , ,且 .
①求 的度数;
②设 , , ,试证明: .
如图1,在平面直角坐标系 中,已知 , ,顶点 在第一象限, , 在 轴的正半轴上 在 的右侧), , , 与 关于 所在的直线对称.
(1)当 时,求点 的坐标;
(2)若点 和点 在同一个反比例函数的图象上,求 的长;
(3)如图2,将(2)中的四边形 向右平移,记平移后的四边形为 ,过点 的反比例函数 的图象与 的延长线交于点 .问:在平移过程中,是否存在这样的 ,使得以点 , , 为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的 的值;若不存在,请说明理由.
如图,在正方形 中,点 在边 上(不与点 , 重合),连接 ,作 于点 , 于点 ,设 .
(1)求证: .
(2)连接 , ,设 , .求证: .
(3)设线段 与对角线 交于点 , 和四边形 的面积分别为 和 ,求 的最大值.
在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程 ,操作步骤是:
第一步:根据方程的系数特征,确定一对固定点 , ;
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点 ,另一条直角边恒过点 ;
第三步:在移动过程中,当三角板的直角顶点落在 轴上点 处时,点 的横坐标 即为该方程的一个实数根(如图 ;
第四步:调整三角板直角顶点的位置,当它落在 轴上另一点 处时,点 的横坐标 即为该方程的另一个实数根.
(1)在图2中,按照“第四步”的操作方法作出点 (请保留作出点 时直角三角板两条直角边的痕迹);
(2)结合图1,请证明“第三步”操作得到的 就是方程 的一个实数根;
(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程 的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当 , , , 与 , , 之间满足怎样的关系时,点 , , , 就是符合要求的一对固定点?
在直角坐标系中,过原点 及点 , 作矩形 、连接 ,点 为 的中点,点 是线段 上的动点,连接 ,作 ,交 于点 ,连接 .已知点 从 点出发,以每秒1个单位长度的速度在线段 上移动,设移动时间为 秒.
(1)如图1,当 时,求 的长.
(2)如图2,当点 在线段 上移动的过程中, 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出 的值.
(3)连接 ,当 将 分成的两部分的面积之比为 时,求相应的 的值.
有两个内角分别是它们对角的一半的四边形叫做半对角四边形.
(1)如图1,在半对角四边形 中, , ,求 与 的度数之和;
(2)如图2,锐角 内接于 ,若边 上存在一点 ,使得 , 的平分线交 于点 ,连接 并延长交 于点 , .求证:四边形 是半对角四边形;
(3)如图3,在(2)的条件下,过点 作 于点 ,交 于点 ,当 时,求 与 的面积之比.
试题篮
()