如图,在横格作业纸(横线等距)上画一条直线,与横格线交于 , , 三点,则 等于
A. |
|
B. |
|
C. |
|
D. |
|
《孙子算经》是中国古代重要的数学著作, 成书于约一千五百年前, 其中有首歌谣: 今有竿不知其长, 量得影长一丈五尺, 立一标杆, 长一尺五寸, 影长五寸, 问竿长几何?意即: 有一根竹竿不知道有多长, 量出它在太阳下的影子长一丈五尺, 同时立一根一尺五寸的小标杆, 它的影长五寸 (提 示: 1 丈 尺, 1 尺 寸) ,则竹竿的长为
A. |
A . 五丈B . 四丈五尺C . 一丈D . 五尺 |
如图,数学活动小组为了测量学校旗杆的高度,使用长为的竹竿作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面处重合,测得,,则旗杆的高为 .
如图,小军、小珠之间的距离为 ,他们在同一盏路灯下的影长分别为 , ,已知小军、小珠的身高分别为 , ,则路灯的高为 .
有一块两条直角边BC、AC的长分别为3厘米和4厘米的Rt△ABC的铁片,现要把它加工成一个面积尽最大的正方形,甲、乙两位师傅加工方案分别如图所示,请用你学过的知识说明哪位师傅的加工方案符合要求(加工中的损耗忽略不计).
如图,小明把手臂水平向前伸直,手持小尺竖直,瞄准小尺的两端E、F,不断调整站立的位置,使在点D处恰好能看到铁塔的顶部B和底部A,设小明的手臂长,小尺长,点D到铁塔底部的距离AD=,则铁塔的高度是__________.
(年新疆、生产建设兵团)如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为 .
(年贵州省黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是 米(平面镜的厚度忽略不计).
试题篮
()