优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 锐角三角函数的定义 / 解答题
初中数学

问题探究:

小红遇到这样一个问题:如图1, ΔABC 中, AB = 6 AC = 4 AD 是中线,求 AD 的取值范围.她的做法是:延长 AD E ,使 DE = AD ,连接 BE ,证明 ΔBED ΔCAD ,经过推理和计算使问题得到解决.

请回答:(1)小红证明 ΔBED ΔCAD 的判定定理是:   

(2) AD 的取值范围是  

方法运用:

(3)如图2, AD ΔABC 的中线,在 AD 上取一点 F ,连结 BF 并延长交 AC 于点 E ,使 AE = EF ,求证: BF = AC

(4)如图3,在矩形 ABCD 中, AB BC = 1 2 ,在 BD 上取一点 F ,以 BF 为斜边作 Rt Δ BEF ,且 EF BE = 1 2 ,点 G DF 的中点,连接 EG CG ,求证: EG = CG

来源:2020年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在中,平分于点于点的外接圆于点,连接

(1)求证:的切线;

(2)求的半径的正切值.

来源:2019年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, AE BC ,垂足为点 E ,以 AE 为直径的 O 与边 CD 相切于点 F ,连接 BF O 于点 G ,连接 EG

(1)求证: CD = AD + CE

(2)若 AD = 4 CE ,求 tan EGF 的值.

来源:2019年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的直径,上的一点,的延长线交于点,连接

(1)求证:的切线;

(2)若的中点,求的值.

来源:2019年四川省甘孜州中考数学试卷
  • 题型:未知
  • 难度:未知

已知点 E 为正方形 ABCD 的边 AD 上一点,连接 BE ,过点 C CN BE ,垂足为 M ,交 AB 于点 N

(1)求证: ΔABE ΔBCN

(2)若 N AB 的中点,求 tan ABE

来源:2018年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABC 内接于 O AB = AC AC BD ,垂足为 E ,点 F BD 的延长线上,且 DF = DC ,连接 AF CF

(1)求证: BAC = 2 CAD

(2)若 AF = 10 BC = 4 5 ,求 tan BAD 的值.

来源:2019年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

已知在平面直角坐标系中(如图),已知抛物线经过点,对称轴是直线,顶点为

(1)求这条抛物线的表达式和点的坐标;

(2)点在对称轴上,且位于顶点上方,设它的纵坐标为,联结,用含的代数式表示的余切值;

(3)将该抛物线向上或向下平移,使得新抛物线的顶点轴上.原抛物线上一点平移后的对应点为点,如果,求点的坐标.

来源:2017年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的直径,上的一点,的延长线交于点,连接

(1)求证:的切线;

(2)若的中点,求的值.

来源:2019年四川省阿坝州中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 为圆 O 的直径, C 为圆 O 上一点, D BC 延长线一点,且 BC = CD CE AD 于点 E

(1)求证:直线 EC 为圆 O 的切线;

(2)设 BE 与圆 O 交于点 F AF 的延长线与 CE 交于点 P ,已知 PCF = CBF PC = 5 PF = 4 ,求 sin PEF 的值.

来源:2018年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,定义:在中,,锐角的邻边与对边的比叫做角的余切,记作,即=

根据上述角的余切定义,解答下列问题:
(1)=         
(2)求的值.

  • 题型:未知
  • 难度:未知

如图,根据图中数据解答下列问题.

(1)sin2A1+sin2B1=________;
sin2A2+sin2B2=________;
sin2A3+sin2B3=________.
观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=________.
(2)如图④,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,利用三角函数的定义和勾股定理,证明(1)中的猜想.
(3)已知∠A+∠B=90°,且,求sinB.

  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,对角线 AC BD 相交于点 O AC = 4 BD = 8 ,点 E 在边 AD 上, AE = 1 3 AD ,连结 BE AC 于点 M

(1)求 AM 的长.

(2) tan MBO 的值为   

来源:2021年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 的顶点坐标分别为 A ( 3 , 0 ) B ( 0 , 4 ) C ( 3 , 0 ) .动点 M N 同时从 A 点出发, M 沿 A C N 沿折线 A B C ,均以每秒1个单位长度的速度移动,当一个动点到达终点 C 时,另一个动点也随之停止移动,移动的时间记为 t 秒.连接 MN

(1)求直线 BC 的解析式;

(2)移动过程中,将 ΔAMN 沿直线 MN 翻折,点 A 恰好落在 BC 边上点 D 处,求此时 t 值及点 D 的坐标;

(3)当点 M N 移动时,记 ΔABC 在直线 MN 右侧部分的面积为 S ,求 S 关于时间 t 的函数关系式.

来源:2018年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABM Rt Δ ADN 的斜边分别为正方形的边 AB AD ,其中 AM = AN

(1)求证: Rt Δ ABM Rt Δ AND

(2)线段 MN 与线段 AD 相交于 T ,若 AT = 1 4 AD ,求 tan ABM 的值.

来源:2018年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, A = 90 ° ,作 BC 的垂直平分线交 AC 于点 D ,延长 AC 至点 E ,使 CE = AB

(1)若 AE = 1 ,求 ΔABD 的周长;

(2)若 AD = 1 3 BD ,求 tan ABC 的值.

来源:2021年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学锐角三角函数的定义解答题