优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解直角三角形 / 解答题
初中数学

如图,在 ΔABC 的边 BC 上取一点 O ,以 O 为圆心, OC 为半径画 O O 与边 AB 相切于点 D AC = AD ,连接 OA O 于点 E ,连接 CE ,并延长交线段 AB 于点 F

(1)求证: AC O 的切线;

(2)若 AB = 10 tan B = 4 3 ,求 O 的半径;

(3)若 F AB 的中点,试探究 BD + CE AF 的数量关系并说明理由.

来源:2020年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 O 中,直径 AB 经过弦 CD 的中点 E ,点 M OD 上, AM 的延长线交 O 于点 G ,交过 D 的直线于 F 1 = 2 ,连接 BD CG 交于点 N

(1)求证: DF O 的切线;

(2)若点 M OD 的中点, O 的半径为3, tan BOD = 2 2 ,求 BN 的长.

来源:2017年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径,弦 CD 与直径 AB 相交于点 F .点 E O 外,作直线 AE ,且 EAC = D

(1)求证:直线 AE O 的切线.

(2)若 BC = 4 cos BAD = 3 4 CF = 10 3 ,求 BF 的长.

来源:2017年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, E F 分别是 AB BC 的中点, CE AB ,垂足为 E AF BC ,垂足为 F AF CE 相交于点 G

(1)证明: ΔCFG ΔAEG

(2)若 AB = 4 ,求四边形 AGCD 的对角线 GD 的长.

来源:2017年四川省德阳市中考数学试卷
  • 题型:未知
  • 难度:未知

问题背景:如图1,等腰 ΔABC 中, AB = AC BAC = 120 ° ,作 AD BC 于点 D ,则 D BC 的中点, BAD = 1 2 BAC = 60 ° ,于是 BC AB = 2 BD AB = 3

迁移应用:如图2, ΔABC ΔADE 都是等腰三角形, BAC = DAE = 120 ° D E C 三点在同一条直线上,连接 BD

①求证: ΔADB ΔAEC

②请直接写出线段 AD BD CD 之间的等量关系式;

拓展延伸:如图3,在菱形 ABCD 中, ABC = 120 ° ,在 ABC 内作射线 BM ,作点 C 关于 BM 的对称点 E ,连接 AE 并延长交 BM 于点 F ,连接 CE CF

①证明 ΔCEF 是等边三角形;

②若 AE = 5 CE = 2 ,求 BF 的长.

来源:2017年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, O ΔABC 的外接圆, AB 是直径, D AC 中点,直线 OD O 相交于 E F 两点, P O 外一点, P 在直线 OD 上,连接 PA PC AF ,且满足 PCA = ABC

(1)求证: PA O 的切线;

(2)证明: E F 2 = 4 OD · OP

(3)若 BC = 8 tan AFP = 2 3 ,求 DE 的长.

来源:2019年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 5 CD = 4 ,点 E BC 边上的点, BE = 3 ,连接 AE DF AE 交于点 F

(1)求证: ΔABE ΔDFA

(2)连接 CF ,求 sin DCF 的值;

(3)连接 AC DF 于点 G ,求 AG GC 的值.

来源:2018年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

在等腰 ΔABC 中, B = 90 ° AM ΔABC 的角平分线,过点 M MN AC 于点 N EMF = 135 ° .将 EMF 绕点 M 旋转,使 EMF 的两边交直线 AB 于点 E ,交直线 AC 于点 F ,请解答下列问题:

(1)当 EMF 绕点 M 旋转到如图①的位置时,求证: BE + CF = BM

(2)当 EMF 绕点 M 旋转到如图②,图③的位置时,请分别写出线段 BE CF BM 之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下, tan BEM = 3 AN = 2 + 1 ,则 BM =    CF =   

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 题型:未知
  • 难度:未知

已知: O 是正方形 ABCD 的外接圆,点 E AB ̂ 上,连接 BE DE ,点 F AD ̂ 上连接 BF DF BF DE DA 分别交于点 G 、点 H ,且 DA 平分 EDF

(1)如图1,求证: CBE = DHG

(2)如图2,在线段 AH 上取一点 N (点 N 不与点 A 、点 H 重合),连接 BN DE 于点 L ,过点 H HK / / BN DE 于点 K ,过点 E EP BN ,垂足为点 P ,当 BP = HF 时,求证: BE = HK

(3)如图3,在(2)的条件下,当 3 HF = 2 DF 时,延长 EP O 于点 R ,连接 BR ,若 ΔBER 的面积与 ΔDHK 的面积的差为 7 4 ,求线段 BR 的长.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 题型:未知
  • 难度:未知

将在同一平面内如图放置的两块三角板绕公共顶点 A 旋转,连接 BC DE .探究 S ΔABC S ΔADE 的比是否为定值.

(1)两块三角板是完全相同的等腰直角三角板时, S ΔABC : S ΔADE 是否为定值?如果是,求出此定值,如果不是,说明理由.(图① )

(2)一块是等腰直角三角板,另一块是含有 30 ° 角的直角三角板时, S ΔABC : S ΔADE 是否为定值?如果是,求出此定值,如果不是,说明理由.(图② )

(3)两块三角板中, BAE + CAD = 180 ° AB = a AE = b AC = m AD = n ( a b m n 为常数), S ΔABC : S ΔADE 是否为定值?如果是,用含 a b m n 的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③ )

来源:2019年贵州省遵义市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形,延长 AD 至点 E ,使 DE = AD ,连接 BD

(1)求证:四边形 BCED 是平行四边形;

(2)若 DA = DB = 2 cos A = 1 4 ,求点 B 到点 E 的距离.

来源:2019年贵州省贵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 与边 BC AC 分别交于 D E 两点,过点 D DH AC 于点 H

(1)判断 DH O 的位置关系,并说明理由;

(2)求证: H CE 的中点;

(3)若 BC = 10 cos C = 5 5 ,求 AE 的长.

来源:2019年贵州省安顺市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形, AB O 的直径,过点 A O 的切线交 BC 的延长线于点 D

(1)求证: ΔDAC ΔDBA

(2)过点 C O 的切线 CE AD 于点 E ,求证: CE = 1 2 AD

(3)若点 F 为直径 AB 下方半圆的中点,连接 CF AB 于点 G ,且 AD = 6 AB = 3 ,求 CG 的长.

来源:2018年广西柳州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 O ΔABC 的外接圆,且 AB = BC = CD AB / / CD ,连接 BD

(1)求证: BD O 的切线;

(2)若 AB = 10 cos BAC = 3 5 ,求 BD 的长及 O 的半径.

来源:2018年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 的对角线 AC BD 交于点 O ABC : BAD = 1 : 2 BE / / AC CE / / BD

(1)求 tan DBC 的值;

(2)求证:四边形 OBEC 是矩形.

来源:2016年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解直角三角形解答题