如图,在平行四边形中,过点A分别作AE⊥BC于点E,AF⊥CD于点F.
(1)求证:∠BAE=∠DAF;
(2)若AE=4,AF=,,求CF的长.
如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(保留根号)
如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此,可依次得到点E4、E5、…、En,分别记△BCE1、△BCE2、△BCE3···△BCEn面积为S1、S2、S3、…Sn. 则Sn= SABC(用含n的代数式表示).
已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为( )
A.5 | B.3 | C.4 | D.7 |
在东西方向的海岸线,上有一长为1km的码头MN(如图,MN=lkm),在码头西端M的正西19.5 km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西3000,且与A相距40km的B处;经过l小时20分钟,又测得该轮船位于A的北偏东6000方向,且与A相距km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.
(1)求大楼与电视塔之间的距离AC;
(2)求大楼的高度CD(精确到1米)
如图,某校九年级(1)班的一个学习小组进行测量小山高度的实践活动,部分同学在山脚点A测得山腰上一点D的仰角为300,并测得AD的长度为180米;另一部分同学在山顶点B测得山脚点A的俯角为450,山腰点D的俯角为600。请你帮助他们计算出小山的高度BC(计算过程和结果都不取近似值)。
试题篮
()