优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解直角三角形
初中数学

如图,在 Rt Δ ABC 中, ACB = 90 ° AC = 3 BC = 4 CD AB ,垂足为 D E BC 的中点, AE CD 交于点 F ,则 DF 的长为  

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

问题提出

(1)如图1,在 Rt Δ ABC 中, ACB = 90 ° AC > BC ACB 的平分线交 AB 于点 D .过点 D 分别作 DE AC DF BC .垂足分别为 E F ,则图1中与线段 CE 相等的线段是        

问题探究

(2)如图2, AB 是半圆 O 的直径, AB = 8 P AB ̂ 上一点,且 PB ̂ = 2 PA ̂ ,连接 AP BP APB 的平分线交 AB 于点 C ,过点 C 分别作 CE AP CF BP ,垂足分别为 E F ,求线段 CF 的长.

问题解决

(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知 O 的直径 AB = 70 m ,点 C O 上,且 CA = CB P AB 上一点,连接 CP 并延长,交 O 于点 D .连接 AD BD .过点 P 分别作 PE AD PF BD ,垂足分别为 E F .按设计要求,四边形 PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设 AP 的长为 x ( m ) ,阴影部分的面积为 y ( m 2 )

①求 y x 之间的函数关系式;

②按照“少儿活动中心”的设计要求,发现当 AP 的长度为 30 m 时,整体布局比较合理.试求当 AP = 30 m 时.室内活动区(四边形 PEDF ) 的面积.

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形, BAC = 75 ° ABC = 45 ° .连接 AO 并延长,交 O 于点 D ,连接 BD .过点 C O 的切线,与 BA 的延长线相交于点 E

(1)求证: AD / / EC

(2)若 AB = 12 ,求线段 EC 的长.

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图(1)放置两个全等的含有 30 ° 角的直角三角板 ABC DEF ( B = E = 30 ° ) ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点 C 与点 E 重合时移动终止),移动过程中始终保持点 B F C E 在同一条直线上,如图(2), AB DF DE 分别交于点 P M AC DE 交于点 Q ,其中 AC = DF = 3 ,设三角板 ABC 移动时间为 x 秒.

(1)在移动过程中,试用含 x 的代数式表示 ΔAMQ 的面积;

(2)计算 x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?

来源:2020年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, B = 90 ° ,点 D AC 上一点,以 CD 为直径的 O AB 于点 E ,连接 CE ,且 CE 平分 ACB

(1)求证: AE O 的切线;

(2)连接 DE ,若 A = 30 ° ,求 BE DE

来源:2020年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

矩形纸片 ABCD ,长 AD = 8 cm ,宽 AB = 4 cm ,折叠纸片,使折痕经过点 B ,交 AD 边于点 E ,点 A 落在点 A ' 处,展平后得到折痕 BE ,同时得到线段 B A ' E A ' ,不再添加其它线段.当图中存在 30 ° 角时, AE 的长为        

来源:2020年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

(1)如图1,将矩形 ABCD 折叠,使 BC 落在对角线 BD 上,折痕为 BE ,点 C 落在点 C ' 处,若 ADB = 46 ° ,则 DBE 的度数为   °

(2)小明手中有一张矩形纸片 ABCD AB = 4 AD = 9

【画一画】

如图2,点 E 在这张矩形纸片的边 AD 上,将纸片折叠,使 AB 落在 CE 所在直线上,折痕设为 MN (点 M N 分别在边 AD BC 上),利用直尺和圆规画出折痕 MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);

【算一算】

如图3,点 F 在这张矩形纸片的边 BC 上,将纸片折叠,使 FB 落在射线 FD 上,折痕为 GF ,点 A B 分别落在点 A ' B ' 处,若 AG = 7 3 ,求 B ' D 的长;

【验一验】

如图4,点 K 在这张矩形纸片的边 AD 上, DK = 3 ,将纸片折叠,使 AB 落在 CK 所在直线上,折痕为 HI ,点 A B 分别落在点 A ' B ' 处,小明认为 B ' I 所在直线恰好经过点 D ,他的判断是否正确,请说明理由.

来源:2018年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, BAC > 90 ° BC = 5 ,将 ΔABC 绕点 C 按顺时针方向旋转 90 ° ,点 B 对应点 B ' 落在 BA 的延长线上.若 sin B ' AC = 9 10 ,则 AC =   

来源:2018年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, DB = DA ,点 F AB 的中点,连接 DF 并延长,交 CB 的延长线于点 E ,连接 AE

(1)求证:四边形 AEBD 是菱形;

(2)若 DC = 10 tan DCB = 3 ,求菱形 AEBD 的面积.

来源:2018年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

【发现】如图①,已知等边 ΔABC ,将直角三角板的 60 ° 角顶点 D 任意放在 BC 边上(点 D 不与点 B C 重合),使两边分别交线段 AB AC 于点 E F

(1)若 AB = 6 AE = 4 BD = 2 ,则 CF =   

(2)求证: ΔEBD ΔDCF

【思考】若将图①中的三角板的顶点 D BC 边上移动,保持三角板与边 AB AC 的两个交点 E F 都存在,连接 EF ,如图②所示,问:点 D 是否存在某一位置,使 ED 平分 BEF FD 平分 CFE ?若存在,求出 BD BC 的值;若不存在,请说明理由.

【探索】如图③,在等腰 ΔABC 中, AB = AC ,点 O BC 边的中点,将三角形透明纸板的一个顶点放在点 O 处(其中 MON = B ) ,使两条边分别交边 AB AC 于点 E F (点 E F 均不与 ΔABC 的顶点重合),连接 EF .设 B = α ,则 ΔAEF ΔABC 的周长之比为  (用含 α 的表达式表示).

来源:2018年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = m BC = n ,将此矩形绕点 B 顺时针方向旋转 θ ( 0 ° < θ < 90 ° ) 得到矩形 A 1 B C 1 D 1 ,点 A 1 在边 CD 上.

(1)若 m = 2 n = 1 ,求在旋转过程中,点 D 到点 D 1 所经过路径的长度;

(2)将矩形 A 1 B C 1 D 1 继续绕点 B 顺时针方向旋转得到矩形 A 2 B C 2 D 2 ,点 D 2 BC 的延长线上,设边 A 2 B CD 交于点 E ,若 A 1 E EC = 6 1 ,求 n m 的值.

来源:2018年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O AB = 17 CD = 10 A = 90 ° cos B = 3 5 ,求 AD 的长.

来源:2018年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ΔABC 中, AB = 10 AC = 2 7 B = 30 ° ,则 ΔABC 的面积等于  

来源:2018年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,在平面直角坐标系中,点 P ( 3 m m ) ( m > 0 ) ,过点 P 的直线 AB x 轴正半轴交于点 A ,与直线 y = 3 x 交于点 B

(1)当 m = 3 OAB = 90 ° 时,求 BP 的长度;

(2)若点 A 的坐标是 ( 6 , 0 ) ,且 AP = 2 PB ,求经过点 P 且以点 B 为顶点的抛物线的函数表达式.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = m BC = n m > n ,点 P 是边 AB 上一点,连接 CP ,将 ΔACP 沿 CP 翻折得到 ΔQCP

(1)若 m = 4 n = 3 ,且 PQ AB ,求 BP 的长;

(2)连接 BQ ,若四边形 BCPQ 是平行四边形,求 m n 之间的关系式.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

初中数学解直角三角形试题