优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解直角三角形的应用
初中数学

有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图. AB CD 是两根相同长度的活动支撑杆,点 O 是它们的连接点, OA = OC h ( cm ) 表示熨烫台的高度.

(1)如图 2 - 1 .若 AB = CD = 110 cm AOC = 120 ° ,求 h 的值;

(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为 120 cm 时,两根支撑杆的夹角 AOC 74 ° (如图 2 - 2 ) .求该熨烫台支撑杆 AB 的长度(结果精确到 1 cm )

(参考数据: sin 37 ° 0 . 6 cos 37 ° 0 . 8 sin 53 ° 0 . 8 cos 53 ° 0 . 6 )

来源:2020年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, A B 两点被池塘隔开,在 AB 外选一点 C ,连接 AC BC .测得 BC = 221 m ACB = 45 ° ABC = 58 ° .根据测得的数据,求 AB 的长(结果取整数).

参考数据: sin 58 ° 0 . 85 cos 58 ° 0 . 53 tan 58 ° 1 . 60

来源:2020年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在距某居民楼 AB 楼底 B 点左侧水平距离 60 m C 点处有一个山坡,山坡 CD 的坡度(或坡比) i = 1 : 0 . 75 ,山坡坡底 C 点到坡顶 D 点的距离 CD = 45 m ,在坡顶 D 点处测得居民楼楼顶 A 点的仰角为 28 ° ,居民楼 AB 与山坡 CD 的剖面在同一平面内,则居民楼 AB 的高度约为(参考数据: sin 28 ° 0 . 47 cos 28 ° 0 . 88 tan 28 ° 0 . 53 ) (    )

A. 76 . 9 m B. 82 . 1 m C. 94 . 8 m D. 112 . 6 m

来源:2020年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

[材料阅读]2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个觇标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于 300 m 时,还要考虑球气差,球气差计算公式为 f = 0 . 43 d 2 R (其中 d 为两点间的水平距离, R 为地球的半径, R 6400000 m ) ,即:山的海拔高度 = 测量点测得山的高度 + 测量点的海拔高度 + 球气差.

[问题解决]某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点 A B 的水平距离 d = 800 m ,测量仪 AC = 1 . 5 m ,觇标 DE = 2 m ,点 E D B 在垂直于地面的一条直线上,在测量点 A 处用测量仪测得山顶觇标顶端 E 的仰角为 37 ° ,测量点 A 处的海拔高度为 1800 m

(1)数据6400000用科学记数法表示为  6 . 4 × 10 6  

(2)请你计算该山的海拔高度.(要计算球气差,结果精确到 0 . 01 m )

(参考数据: sin 37 ° 0 . 60 cos 37 ° 0 . 80 tan 37 ° 0 . 75 )

来源:2020年云南省昆明市中考数学试卷
  • 题型:未知
  • 难度:未知

图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形 ABC DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称, BC EF 均垂直于地面,扇形的圆心角 ABC = DEF = 28 ° ,半径 BA = ED = 60 cm ,点 A 与点 D 在同一水平线上,且它们之间的距离为 10 cm

(1)求闸机通道的宽度,即 BC EF 之间的距离(参考数据: sin 28 ° 0 . 47 cos 28 ° 0 . 88 tan 28 ° 0 . 53 )

(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长 AB = 120 mm ,支撑板长 CD = 80 mm ,底座长 DE = 90 mm .托板 AB 固定在支撑板顶端点 C 处,且 CB = 40 mm ,托板 AB 可绕点 C 转动,支撑板 CD 可绕点 D 转动.(结果保留小数点后一位)

(1)若 DCB = 80 ° CDE = 60 ° ,求点 A 到直线 DE 的距离;

(2)为了观看舒适,在(1)的情况下,把 AB 绕点 C 逆时针旋转 10 ° 后,再将 CD 绕点 D 顺时针旋转,使点 B 落在直线 DE 上即可,求 CD 旋转的角度.(参考数据: sin 40 ° 0 . 643 cos 40 ° 0 . 766 tan 40 ° 0 . 839 sin 26 . 6 ° 0 . 448 cos 26 . 6 ° 0 . 894 tan 26 . 6 ° 0 . 500 3 1 . 732 )

来源:2020年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,1号楼在2号楼的南侧,两楼高度均为 90 m ,楼间距为 AB .冬至日正午,太阳光线与水平面所成的角为 32 . 3 ° ,1号楼在2号楼墙面上的影高为 CA ;春分日正午,太阳光线与水平面所成的角为 55 . 7 ° ,1号楼在2号楼墙面上的影高为 DA .已知 CD = 42 m

(1)求楼间距 AB

(2)若2号楼共30层,层高均为 3 m ,则点 C 位于第几层?(参考数据: sin 32 . 3 ° 0 . 53 cos 32 . 3 ° 0 . 85 tan 32 . 3 ° 0 . 63 sin 55 . 7 ° 0 . 83 cos 55 . 7 ° 0 . 56 tan 55 . 7 ° 1 . 47 )

来源:2018年江苏省徐州市中考数学试卷
  • 题型:未知
  • 难度:未知

京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点 A B 和点 C D ,先用卷尺量得 AB = 160 m CD = 40 m ,再用测角仪测得 CAB = 30 ° DBA = 60 ° ,求该段运河的河宽(即 CH 的长).

来源:2018年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道 AB = 120 cm ,两扇活页门的宽 OC = OB = 60 cm ,点 B 固定,当点 C AB 上左右运动时, OC OB 的长度不变.(所有的结果保留小数点后一位)

(1)若 OBC = 50 ° ,求 AC 的长;

(2)当点 C 从点 A 向右运动 60 cm 时,求点 O 在此过程中运动的路径长.

参考数据: sin 50 ° 0 . 77 cos 50 ° 0 . 64 tan 50 ° 1 . 19 π 取3.14.

来源:2018年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

图1是一辆吊车的实物图,图2是其工作示意图, AC 是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 3 . 4 m .当起重臂 AC 长度为 9 m ,张角 HAC 118 ° 时,求操作平台 C 离地面的高度(结果保留小数点后一位:参考数据: sin 28 ° 0 . 47 cos 28 ° 0 . 88 tan 28 ° 0 . 53 )

来源:2018年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨 MN 安装在窗框上,托悬臂 DE 安装在窗扇上,交点 A 处装有滑块,滑块可以左右滑动,支点 B C D 始终在一直线上,延长 DE MN 于点 F .已知 AC = DE = 20 cm AE = CD = 10 cm BD = 40 cm

(1)窗扇完全打开,张角 CAB = 85 ° ,求此时窗扇与窗框的夹角 DFB 的度数;

(2)窗扇部分打开,张角 CAB = 60 ° ,求此时点 A B 之间的距离(精确到 0 . 1 cm )

(参考数据: 3 1 . 732 6 2 . 449 )

来源:2018年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,两根竹竿 AB AD 斜靠在墙 CE 上,量得 ABC = α ADC = β ,则竹竿 AB AD 的长度之比为 (    )

A. tan α tan β B. sin β sin α C. sin α sin β D. cos β cos α

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧 OB 与墙 MN 平行且距离为0.8米.已知小汽车车门宽 AO 为1.2米,当车门打开角度 AOB 40 ° 时,车门是否会碰到墙?请说明理由.(参考数据: sin 40 ° 0 . 64 cos 40 ° 0 . 77 tan 40 ° 0 . 84 )

来源:2017年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,一名滑雪运动员沿着倾斜角为 34 ° 的斜坡,从 A 滑行至 B ,已知 AB = 500 米,则这名滑雪运动员的高度下降了  米.(参考数据: sin 34 ° 0 . 56 cos 34 ° 0 . 83 tan 34 ° 0 . 67 )

来源:2017年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图是某小区的一个健身器材,已知 BC = 0 . 15 m AB = 2 . 70 m BOD = 70 ° ,求端点 A 到地面 CD 的距离(精确到 0 . 1 m ) .(参考数据: sin 70 ° 0 . 94 cos 70 ° 0 . 34 tan 70 ° 2 . 75 )

来源:2017年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解直角三角形的应用试题