优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解直角三角形的应用 / 解答题
初中数学

人字折叠梯完全打开后如图1所示, B C 是折叠梯的两个着地点, D 是折叠梯最高级踏板的固定点.图2是它的示意图, AB = AC BD = 140 cm BAC = 40 ° ,求点 D 离地面的高度 DE .(结果精确到 0 . 1 cm ;参考数据 sin 70 ° 0 . 94 cos 70 ° 0 . 34 sin 20 ° 0 . 34 cos 20 ° 0 . 94 )

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1是某中学教学楼的推拉门,已知门的宽度 AD = 2 米,且两扇门的大小相同(即 AB = CD ) ,将左边的门 AB B 1 A 1 绕门轴 A A 1 向里面旋转 35 ° ,将右边的门 CD D 1 C 1 绕门轴 D D 1 向外面旋转 45 ° ,其示意图如图2,求此时 B C 之间的距离(结果保留一位小数).(参考数据: sin 35 ° 0 . 6 cos 35 ° 0 . 8 2 1 . 4 )

来源:2021年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条 AB = AC = 50 cm ABC = 47 °

(1)求车位锁的底盒长 BC

(2)若一辆汽车的底盘高度为 30 cm ,当车位锁上锁时,问这辆汽车能否进入该车位?

(参考数据: sin 47 ° 0 . 73 cos 47 ° 0 . 68 tan 47 ° 1 . 07 )

来源:2020年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

拓展小组研制的智能操作机器人,如图1,水平操作台为 l ,底座 AB 固定,高 AB 50 cm ,连杆 BC 长度为 70 cm ,手臂 CD 长度为 60 cm .点 B C 是转动点,且 AB BC CD 始终在同一平面内.

(1)转动连杆 BC ,手臂 CD ,使 ABC = 143 ° CD / / l ,如图2,求手臂端点 D 离操作台 l 的高度 DE 的长(精确到 1 cm ,参考数据: sin 53 ° 0 . 8 cos 53 ° 0 . 6 )

(2)物品在操作台 l 上,距离底座 A 110 cm 的点 M 处,转动连杆 BC ,手臂 CD ,手臂端点 D 能否碰到点 M ?请说明理由.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, A B 两点被池塘隔开,在 AB 外选一点 C ,连接 AC BC .测得 BC = 221 m ACB = 45 ° ABC = 58 ° .根据测得的数据,求 AB 的长(结果取整数).

参考数据: sin 58 ° 0 . 85 cos 58 ° 0 . 53 tan 58 ° 1 . 60

来源:2020年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

某工程队准备从 A B 修建一条隧道,测量员在直线 AB 的同一侧选定 C D 两个观测点,如图.测得 AC 长为 3 2 2 km CD 长为 3 4 ( 2 + 6 ) km BD 长为 3 2 km ACD = 60 ° CDB = 135 ° ( A B C D 在同一水平面内).

(1)求 A D 两点之间的距离;

(2)求隧道 AB 的长度.

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形 ABC DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称, BC EF 均垂直于地面,扇形的圆心角 ABC = DEF = 28 ° ,半径 BA = ED = 60 cm ,点 A 与点 D 在同一水平线上,且它们之间的距离为 10 cm

(1)求闸机通道的宽度,即 BC EF 之间的距离(参考数据: sin 28 ° 0 . 47 cos 28 ° 0 . 88 tan 28 ° 0 . 53 )

(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

2021年,达州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为 30 ° 的河床斜坡边,斜坡 BC 长为48米,在点 D 处测得桥墩最高点 A 的仰角为 35 ° CD 平行于水平线 BM CD 长为 16 3 米,求桥墩 AB 的高(结果保留1位小数). ( sin 35 ° 0 . 57 cos 35 ° 0 . 82 tan 35 ° 0 . 70 3 1 . 73 )

来源:2021年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,1号楼在2号楼的南侧,两楼高度均为 90 m ,楼间距为 AB .冬至日正午,太阳光线与水平面所成的角为 32 . 3 ° ,1号楼在2号楼墙面上的影高为 CA ;春分日正午,太阳光线与水平面所成的角为 55 . 7 ° ,1号楼在2号楼墙面上的影高为 DA .已知 CD = 42 m

(1)求楼间距 AB

(2)若2号楼共30层,层高均为 3 m ,则点 C 位于第几层?(参考数据: sin 32 . 3 ° 0 . 53 cos 32 . 3 ° 0 . 85 tan 32 . 3 ° 0 . 63 sin 55 . 7 ° 0 . 83 cos 55 . 7 ° 0 . 56 tan 55 . 7 ° 1 . 47 )

来源:2018年江苏省徐州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,为了测量河对岸两点 A B 之间的距离,在河岸这边取点 C D .测得 CD = 80 m ACD = 90 ° BCD = 45 ° ADC = 19 ° 17 ' BDC = 56 ° 19 ' .设 A B C D 在同一平面内,求 A B 两点之间的距离.

(参考数据: tan 19 ° 17 ' 0 . 35 tan 56 ° 19 ' 1 . 50 )

来源:2021年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆 AB 垂直于地面 l ,活动杆 CD 固定在支撑杆上的点 E 处.若 AED = 48 ° BE = 110 cm DE = 80 cm ,求活动杆端点 D 离地面的高度 DF .(结果精确到 1 cm ,参考数据: sin 48 ° 0 . 74 cos 48 ° 0 . 67 tan 48 ° 1 . 11 )

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄 AP 始终平分同一平面内两条伞骨所成的角 BAC ,且 AB = AC ,从而保证伞圈 D 能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈 D 已滑动到点 D ' 的位置,且 A B D ' 三点共线, AD ' = 40 cm B AD ' 中点.当 BAC = 140 ° 时,伞完全张开.

(1)求 AB 的长.

(2)当伞从完全张开到完全收拢,求伞圈 D 沿着伞柄向下滑动的距离.

(参考数据: sin 70 ° 0 . 94 cos 70 ° 0 . 34 tan 70 ° 2 . 75 )

来源:2021年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

一座吊桥的钢索立柱 AD 两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索 AB 的长度.他们测得 ABD 30 ° ,由于 B D 两点间的距离不易测得,通过探究和测量,发现 ACD 恰好为 45 ° ,点 B 与点 C 之间的距离约为 16 m .已知 B C D 共线, AD BD .求钢索 AB 的长度.(结果保留根号)

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿 AB 摆成如图1所示.已知 AB = 4 . 8 m ,鱼竿尾端 A 离岸边 0 . 4 m ,即 AD = 0 . 4 m .海面与地面 AD 平行且相距 1 . 2 m ,即 DH = 1 . 2 m

(1)如图1,在无鱼上钩时,海面上方的鱼线 BC 与海面 HC 的夹角 BCH = 37 ° ,海面下方的鱼线 CO 与海面 HC 垂直,鱼竿 AB 与地面 AD 的夹角 BAD = 22 ° .求点 O 到岸边 DH 的距离;

(2)如图2,在有鱼上钩时,鱼竿与地面的夹角 BAD = 53 ° ,此时鱼线被拉直,鱼线 BO = 5 . 46 m ,点 O 恰好位于海面.求点 O 到岸边 DH 的距离.

(参考数据: sin 37 ° = cos 53 ° 3 5 cos 37 ° = sin 53 ° 4 5 tan 37 ° 3 4 sin 22 ° 3 8 cos 22 ° 15 16 tan 22 ° 2 5 )

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道 AB = 120 cm ,两扇活页门的宽 OC = OB = 60 cm ,点 B 固定,当点 C AB 上左右运动时, OC OB 的长度不变.(所有的结果保留小数点后一位)

(1)若 OBC = 50 ° ,求 AC 的长;

(2)当点 C 从点 A 向右运动 60 cm 时,求点 O 在此过程中运动的路径长.

参考数据: sin 50 ° 0 . 77 cos 50 ° 0 . 64 tan 50 ° 1 . 19 π 取3.14.

来源:2018年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解直角三角形的应用解答题