优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解直角三角形的应用 / 解答题
初中数学

保护视力要求人写字时眼睛和笔端的距离应超过 30 cm ,图1是一位同学的坐姿,把他的眼睛 B ,肘关节 C 和笔端 A 的位置关系抽象成图2的 ΔABC ,已知 BC = 30 cm AC = 22 cm ACB = 53 ° ,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据: sin 53 ° 0 . 8 cos 53 ° 0 . 6 tan 53 ° 1 . 3 )

来源:2016年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,著名旅游景区 B 位于大山深处,原来到此旅游需要绕行 C 地,沿折线 A C B 方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从 A 地到景区 B 的笔直公路.请结合 A = 45 ° B = 30 ° BC = 100 千米, 2 1 . 4 3 1 . 7 等数据信息,解答下列问题:

(1)公路修建后,从 A 地到景区 B 旅游可以少走多少千米?

(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加 25 % ,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?

来源:2020年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

如图是小红在一次放风筝活动中某时段的示意图,她在 A 处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成 30 ° 角,线段 A A 1 表示小红身高1.5米.

(1)当风筝的水平距离 AC = 18 米时,求此时风筝线 AD 的长度;

(2)当她从点 A 跑动 9 2 米到达点 B 处时,风筝线与水平线构成 45 ° 角,此时风筝到达点 E 处,风筝的水平移动距离 CF = 10 3 米,这一过程中风筝线的长度保持不变,求风筝原来的高度 C 1 D

来源:2018年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

一酒精消毒瓶如图1, AB 为喷嘴, ΔBCD 为按压柄, CE 为伸缩连杆, BE EF 为导管,其示意图如图2, DBE = BEF = 108 ° BD = 6 cm BE = 4 cm .当按压柄 ΔBCD 按压到底时, BD 转动到 BD ' ,此时 BD ' / / EF (如图 3 )

(1)求点 D 转动到点 D ' 的路径长;

(2)求点 D 到直线 EF 的距离(结果精确到 0 . 1 cm )

(参考数据: sin 36 ° 0 . 59 cos 36 ° 0 . 81 tan 36 ° 0 . 73 sin 72 ° 0 . 95 cos 72 ° 0 . 31 tan 72 ° 3 . 08 )

来源:2021年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,为了测量某条河的宽度,现在河边的一岸边任意取一点 A ,又在河的另一岸边取两点 B C 测得 α = 30 ° β = 45 ° ,量得 BC 长为100米.求河的宽度(结果保留根号).

来源:2017年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

人字折叠梯完全打开后如图1所示, B C 是折叠梯的两个着地点, D 是折叠梯最高级踏板的固定点.图2是它的示意图, AB = AC BD = 140 cm BAC = 40 ° ,求点 D 离地面的高度 DE .(结果精确到 0 . 1 cm ;参考数据 sin 70 ° 0 . 94 cos 70 ° 0 . 34 sin 20 ° 0 . 34 cos 20 ° 0 . 94 )

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,为了测量某条河的对岸边 C D 两点间的距离.在河的岸边与 CD 平行的直线 EF 上取两点 A B ,测得 BAC = 45 ° ABC = 37 ° DBF = 60 ° ,量得 AB 长为70米.求 C D 两点间的距离(参考数据: sin 37 ° 3 5 cos 37 ° 4 5 tan 37 ° 3 4 )

来源:2020年四川省泸州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1是某中学教学楼的推拉门,已知门的宽度 AD = 2 米,且两扇门的大小相同(即 AB = CD ) ,将左边的门 AB B 1 A 1 绕门轴 A A 1 向里面旋转 35 ° ,将右边的门 CD D 1 C 1 绕门轴 D D 1 向外面旋转 45 ° ,其示意图如图2,求此时 B C 之间的距离(结果保留一位小数).(参考数据: sin 35 ° 0 . 6 cos 35 ° 0 . 8 2 1 . 4 )

来源:2021年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,有一个三角形的钢架 ABC A = 30 ° C = 45 ° AC = 2 ( 3 + 1 ) m .请计算说明,工人师傅搬运此钢架能否通过一个直径为 2 . 1 m 的圆形门?

来源:2018年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条 AB = AC = 50 cm ABC = 47 °

(1)求车位锁的底盒长 BC

(2)若一辆汽车的底盘高度为 30 cm ,当车位锁上锁时,问这辆汽车能否进入该车位?

(参考数据: sin 47 ° 0 . 73 cos 47 ° 0 . 68 tan 47 ° 1 . 07 )

来源:2020年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆 AB 垂直于地面 l ,活动杆 CD 固定在支撑杆上的点 E 处.若 AED = 48 ° BE = 110 cm DE = 80 cm ,求活动杆端点 D 离地面的高度 DF .(结果精确到 1 cm ,参考数据: sin 48 ° 0 . 74 cos 48 ° 0 . 67 tan 48 ° 1 . 11 )

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄 AP 始终平分同一平面内两条伞骨所成的角 BAC ,且 AB = AC ,从而保证伞圈 D 能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈 D 已滑动到点 D ' 的位置,且 A B D ' 三点共线, AD ' = 40 cm B AD ' 中点.当 BAC = 140 ° 时,伞完全张开.

(1)求 AB 的长.

(2)当伞从完全张开到完全收拢,求伞圈 D 沿着伞柄向下滑动的距离.

(参考数据: sin 70 ° 0 . 94 cos 70 ° 0 . 34 tan 70 ° 2 . 75 )

来源:2021年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

一座吊桥的钢索立柱 AD 两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索 AB 的长度.他们测得 ABD 30 ° ,由于 B D 两点间的距离不易测得,通过探究和测量,发现 ACD 恰好为 45 ° ,点 B 与点 C 之间的距离约为 16 m .已知 B C D 共线, AD BD .求钢索 AB 的长度.(结果保留根号)

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿 AB 摆成如图1所示.已知 AB = 4 . 8 m ,鱼竿尾端 A 离岸边 0 . 4 m ,即 AD = 0 . 4 m .海面与地面 AD 平行且相距 1 . 2 m ,即 DH = 1 . 2 m

(1)如图1,在无鱼上钩时,海面上方的鱼线 BC 与海面 HC 的夹角 BCH = 37 ° ,海面下方的鱼线 CO 与海面 HC 垂直,鱼竿 AB 与地面 AD 的夹角 BAD = 22 ° .求点 O 到岸边 DH 的距离;

(2)如图2,在有鱼上钩时,鱼竿与地面的夹角 BAD = 53 ° ,此时鱼线被拉直,鱼线 BO = 5 . 46 m ,点 O 恰好位于海面.求点 O 到岸边 DH 的距离.

(参考数据: sin 37 ° = cos 53 ° 3 5 cos 37 ° = sin 53 ° 4 5 tan 37 ° 3 4 sin 22 ° 3 8 cos 22 ° 15 16 tan 22 ° 2 5 )

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

图1是一辆吊车的实物图,图2是其工作示意图, AC 是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 3 . 4 m .当起重臂 AC 长度为 9 m ,张角 HAC 118 ° 时,求操作平台 C 离地面的高度(结果保留小数点后一位:参考数据: sin 28 ° 0 . 47 cos 28 ° 0 . 88 tan 28 ° 0 . 53 )

来源:2018年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解直角三角形的应用解答题