为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表
一周诗词诵背数量 |
3首 |
4首 |
5首 |
6首 |
7首 |
8首 |
人数 |
10 |
10 |
15 |
40 |
25 |
20 |
请根据调查的信息分析:
(1)活动启动之初学生“一周诗词诵背数量”的中位数为 ;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).
参与度 人数 方式 |
|
|
|
|
录播 |
4 |
16 |
12 |
8 |
直播 |
2 |
10 |
16 |
12 |
(1)你认为哪种教学方式学生的参与度更高?简要说明理由.
(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?
(3)该校共有800名学生,选择“录播”和“直播”的人数之比为 ,估计参与度在0.4以下的共有多少人?
为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有 、 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:
加工厂 |
74 |
75 |
75 |
75 |
73 |
77 |
78 |
72 |
76 |
75 |
加工厂 |
78 |
74 |
78 |
73 |
74 |
75 |
74 |
74 |
75 |
75 |
(1)根据表中数据,求 加工厂的10个鸡腿质量的中位数、众数、平均数;
(2)估计 加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?
(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?
为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了: .党史宣讲; .歌曲演唱; .校刊编撰; .诗歌创作等四个小组,团支部将各组人数情况制成了统计图表(不完整).
各组参加人数情况统计表
小组类别 |
|
|
|
|
人数(人 |
10 |
|
15 |
5 |
根据统计图表中的信息,解答下列问题:
(1)求 和 的值;
(2)求扇形统计图中 所对应的圆心角度数;
(3)若在某一周各小组平均每人参与活动的时间如下表所示:
小组类别 |
|
|
|
|
平均用时(小时) |
2.5 |
3 |
2 |
3 |
求这一周四个小组所有成员平均每人参与活动的时间.
为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级: .优秀; .良好; .及格: .不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.
垃圾分类知识测试成绩统计表
测试等级 |
百分比 |
人数 |
.优秀 |
|
20 |
.良好 |
60 |
|
.及格 |
|
|
.不及格 |
|
请结合统计表,回答下列问题:
(1)求本次参与调查的学生人数及 , 的值;
(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;
(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.
某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:
抽取的学生最喜爱体育锻炼项目的统计表
类别 |
项目 |
人数(人 |
|
跳绳 |
59 |
|
健身操 |
▲ |
|
俯卧撑 |
31 |
|
开合跳 |
▲ |
|
其它 |
22 |
(1)求参与问卷调查的学生总人数.
(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?
(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.
为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:
收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88
(1)根据上述数据,将下列表格补充完整.
整理、描述数据:
成绩 分 |
88 |
89 |
90 |
91 |
95 |
96 |
97 |
98 |
99 |
学生人数 |
2 |
1 |
|
3 |
2 |
1 |
|
2 |
1 |
数据分析:样本数据的平均数、众数和中位数如下表
平均数 |
众数 |
中位数 |
93 |
|
91 |
得出结论:
(2)根据所给数据,如果该校想确定七年级前 的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为 分.
数据应用:
(3)根据数据分析,该校决定在七年级授予测评成绩前 的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.
为推进扬州市"青少年茁壮成长工程",某校开展"每日健身操"活动,为了解学生对"每日健身操"活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:
抽样调查各类喜欢程度人数统计表
喜欢程度 |
人数 |
.非常喜欢 |
50人 |
.比较喜欢 |
人 |
.无所谓 |
人 |
.不喜欢 |
16人 |
根据以上信息,回答下列问题:
(1)本次调查的样本容量是 ;
(2)扇形统计图中表示 程度的扇形圆心角为 ,统计表中 ;
(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢"每日健身操"活动(包含非常喜欢和比较喜欢).
(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:
应聘者 |
专业知识 |
讲课 |
答辩 |
甲 |
70 |
85 |
80 |
乙 |
90 |
85 |
75 |
丙 |
80 |
90 |
85 |
按照招聘简章要求,对专业知识、讲课、答辩三项赋权 .请计算三名应聘者的平均成绩,从成绩看,应该录取谁?
(2)我市举行了某学科实验操作考试,有 、 、 、 四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.
①小厉参加实验 考试的概率是 ;
②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.
为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用如图的折线统计图表示:(甲为实线,乙为虚线)
(1)依据折线统计图,得到下面的表格:
射击次序(次 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
甲的成绩(环 |
8 |
9 |
7 |
9 |
8 |
6 |
7 |
|
10 |
8 |
乙的成绩(环 |
6 |
7 |
9 |
7 |
9 |
10 |
8 |
7 |
|
10 |
其中 , ;
(2)甲成绩的众数是 环,乙成绩的中位数是 环;
(3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定?
(4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用列表或画树状图法,求出恰好选到1男1女的概率.
为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图 .
复学一个月后,根据第二次测试的数学成绩得到如下统计表:
成绩 |
|
|
|
|
|
|
|
人数 |
1 |
3 |
3 |
8 |
15 |
|
6 |
根据以上图表信息,完成下列问题:
(1) ;
(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);
(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有 人,至多有 人;
(4)请估计复学一个月后该校800名八年级学生数学成绩优秀 分及以上)的人数.
在创建"浙江省健康促进学校"的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成两幅不完整的统计图表,请根据图表信息解答下列问题:
抽取的学生视力情况统计表
类别 |
检查结果 |
人数 |
|
正常 |
88 |
|
轻度近视 |
▲ |
|
中度近视 |
59 |
|
重度近视 |
▲ |
(1)求所抽取的学生总人数;
(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数;
(3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.
为了庆祝中国共产党建党100周年,某校开展了学党史知识竞赛.参加知识竞赛的学生分为甲乙两组,每组学生均为20名,赛后根据竞赛成绩得到尚不完整的统计图表(如图),已知竞赛成绩满分为100分,统计表中 , 满足 .请根据所给信息,解答下列问题:
甲组20名学生竞赛成绩统计表
成绩(分 |
70 |
80 |
90 |
100 |
人数 |
3 |
|
|
5 |
(1)求统计表中 , 的值;
(2)小明按以下方法计算甲组20名学生竞赛成绩的平均分是: (分 .根据所学统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果;
(3)如果依据平均成绩确定竞赛结果,那么竞赛成绩较好的是哪个组?请说明理由.
2020年我国进行了第七次全国人口普查,小星要了解我省城镇及乡村人口变化情况,根据贵州省历次人口普查结果,绘制了如下的统计图表.请利用统计图表提供的信息回答下列问题:
贵州省历次人口普查城镇人口统计表
年份 |
1953 |
1961 |
1982 |
1990 |
2000 |
2010 |
2020 |
城镇人口(万人) |
110 |
204 |
540 |
635 |
845 |
1175 |
2050 |
城镇化率 |
|
|
|
|
|
|
|
(1)这七次人口普查乡村人口数的中位数是 万人;
(2)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,我省2010年的城镇化率 是 (结果精确到 ;假设未来几年我省城乡总人口数与2020年相同,城镇化率要达到 ,则需从乡村迁入城镇的人口数量是 万人(结果保留整数);
(3)根据贵州省历次人口普查统计图表,用一句话描述我省城镇化的趋势.
为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球、排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.
某班参加球类活动人数统计表
项目 |
篮球 |
足球 |
排球 |
羽毛球 |
乒乓球 |
人数 |
|
6 |
8 |
6 |
4 |
请根据图表中提供的信息,解答下列问题:
(1)图表中 , ;
(2)若该校学生共有1000人,则该校参加羽毛球活动的人数约为 人;
(3)该班参加乒乓球活动的4位同学中,有3位男同学(分别用 , , 表示)和1位女同学(用 表示),现准备从中选出两名同学参加双打比赛,用树状图或列表法求出恰好选出一男一女的概率.
试题篮
()