"红色小讲解员"演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是
A. |
中位数 |
B. |
众数 |
C. |
平均数 |
D. |
方差 |
已知一组数据1,2,8,6,8,对这组数据描述正确的是
A. |
众数是8 |
B. |
平均数是6 |
C. |
中位数是8 |
D. |
方差是9 |
小明到某公司应聘,他想了解自己入职后的工资情况,他需要关注该公司所有员工工资的
A. |
众数 |
B. |
中位数 |
C. |
方差 |
D. |
平均数 |
某鞋店试销一种新款男鞋,试销期间销售情况如下表:
鞋的尺码 |
24 |
24.5 |
25 |
25.5 |
26 |
26.5 |
销售数量(双 |
2 |
7 |
18 |
10 |
8 |
3 |
则该组数据的下列统计量中,对鞋店下次进货最具有参考意义的是
A. |
中位数 |
B. |
平均数 |
C. |
众数 |
D. |
方差 |
下列说法正确的是
A. |
"买中奖率为 的奖券10张,中奖"是必然事件 |
B. |
"汽车累积行驶 ,从未出现故障"是不可能事件 |
C. |
襄阳气象局预报说"明天的降水概率为 ",意味着襄阳明天一定下雨 |
D. |
若两组数据的平均数相同,则方差小的更稳定 |
如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是
A. |
乙的最好成绩比甲高 |
B. |
乙的成绩的平均数比甲小 |
C. |
乙的成绩的中位数比甲小 |
D. |
乙的成绩比甲稳定 |
下列说法正确的是
A. |
为了解人造卫星的设备零件的质量情况,选择抽样调查 |
B. |
方差是刻画数据波动程度的量 |
C. |
购买一张体育彩票必中奖,是不可能事件 |
D. |
掷一枚质地均匀的硬币,正面朝上的概率为1 |
一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示:
鞋的尺码 |
22 |
22.5 |
23 |
23.5 |
24 |
24.5 |
25 |
销售量双 |
1 |
2 |
5 |
11 |
7 |
3 |
1 |
若每双鞋的销售利润相同,则该店主最应关注的销售数据是下列统计量中的
A. |
平均数 |
B. |
方差 |
C. |
众数 |
D. |
中位数 |
某校7名学生在某次测量体温(单位: 时得到如下数据:36.3,36.4,36.5,36.7,36.6,36.5,36.5,对这组数据描述正确的是
A. |
众数是36.5 |
B. |
中位数是36.7 |
C. |
平均数是36.6 |
D. |
方差是0.4 |
在对一组样本数据进行分析时,小华列出了方差的计算公式: ,由公式提供的信息,则下列说法错误的是
A. |
样本的容量是4 |
B. |
样本的中位数是3 |
C. |
样本的众数是3 |
D. |
样本的平均数是3.5 |
下列说法错误的是
A. |
在一定条件下,可能发生也可能不发生的事件称为随机事件 |
B. |
一组数据中出现次数最多的数据称为这组数据的众数 |
C. |
方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大 |
D. |
全面调查和抽样调查是收集数据的两种方式 |
下列说法正确的是
A. |
了解我市市民知晓"礼让行人"交通新规的情况,适合全面调查 |
B. |
甲、乙两人跳远成绩的方差分别为 , ,说明乙的跳远成绩比甲稳定 |
C. |
一组数据2,2,3,4的众数是2,中位数是2.5 |
D. |
可能性是 的事件在一次试验中一定不会发生 |
已知一组数据为7,2,5, ,8,它们的平均数是5,则这组数据的方差为
A. |
3 |
B. |
4.5 |
C. |
5.2 |
D. |
6 |
在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的
A. |
平均数 |
B. |
中位数 |
C. |
众数 |
D. |
方差 |
试题篮
()