在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中、
两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:
[信息一]小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值)
[信息二]上图中,从左往右第四组的成绩如下:
75 |
75 |
79 |
79 |
79 |
79 |
80 |
80 |
81 |
82 |
82 |
83 |
83 |
84 |
84 |
84 |
[信息三]、
两小区各50名居民成绩的平均数、中位数、众数、优秀率
分及以上为优秀)、方差等数据如下(部分空缺)
小区 |
平均数 |
中位数 |
众数 |
优秀率 |
方差 |
75.1 |
75 |
79 |
277 |
||
75.1 |
77 |
76 |
211 |
根据以上信息,回答下列问题:
(1)求小区50名居民成绩的中位数.
(2)请估计小区500名居民成绩能超过平均数的人数.
(3)请尽量从多个角度,选择合适的统计量分析,
两小区参加测试的居民掌握垃圾分类知识的情况.
称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).
实际称量读数和记录数据统计表
序号 数据 |
1 |
2 |
3 |
4 |
5 |
甲组 |
48 |
52 |
47 |
49 |
54 |
乙组 |
2 |
4 |
(1)补充完成乙组数据的折线统计图.
(2)①甲,乙两组数据的平均数分别为,
,写出
与
之间的等量关系.
②甲,乙两组数据的方差分别为,
,比较
与
的大小,并说明理由.
某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:
周一至周五英语听力训练人数统计表
年级 |
参加英语听力训练人数 |
||||
周一 |
周二 |
周三 |
周四 |
周五 |
|
七年级 |
15 |
20 |
30 |
30 |
|
八年级 |
20 |
24 |
26 |
30 |
30 |
合计 |
35 |
44 |
51 |
60 |
60 |
(1)填空: ;
(2)根据上述统计图表完成下表中的相关统计量:
年级 |
平均训练时间的中位数 |
参加英语听力训练人数的方差 |
七年级 |
24 |
34 |
八年级 |
|
14.4 |
(3)请你利用上述统计图表对七、八年级英语听力训练情况写出两条合理的评价;
(4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.
为了调查甲、乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.
收集数据:
从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:如下:
甲:400,400,408,406,410,409,400,393,394,395
乙:403,404,396,399,402,402,405,397,402,398
整理数据:
表一
质量 频数 种类 |
||||||
甲 |
3 |
0 |
3 |
0 |
1 |
3 |
乙 |
0 |
|
1 |
5 |
|
0 |
分析数据:
表二
种类 |
平均数 |
中位数 |
众数 |
方差 |
甲 |
401.5 |
|
400 |
36.85 |
乙 |
400.8 |
402 |
|
8.56 |
得出结论:
包装机分装情况比较好的是 (填甲或乙),说明你的理由.
甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:
甲:9,10,8,5,7,8,10,8,8,7
乙:5,7,8,7,8,9,7,9,10,10
丙:7,6,8,5,4,7,6,3,9,5
(1)根据以上数据完成下表:
平均数 |
中位数 |
方差 |
|
甲 |
8 |
8 |
|
乙 |
8 |
8 |
2.2 |
丙 |
6 |
|
3 |
(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.
小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:
.小云所住小区5月1日至30日的厨余垃圾分出量统计图:
.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:
时段 |
1日至10日 |
11日至20日 |
21日至30日 |
平均数 |
100 |
170 |
250 |
(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 173 (结果取整数);
(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);
(3)记该小区5月1日至10日的厨余垃圾分出量的方差为,5月11日至20日的厨余垃圾分出量的方差为
,5月21日至30日的厨余垃圾分出量的方差为
.直接写出
,
,
的大小关系.
试题篮
()