在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .
一个不透明的口袋中有红球和黑球共25个,这些球除颜色外都相同.进行大量的摸球试验(每次摸出1个球)后,发现摸到黑球的频率在0.6附近摆动,据此可以估计黑球为 个.
在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有 个.
下表记录了某种幼树在一定条件下移植成活情况
移植总数 |
400 |
1500 |
3500 |
7000 |
9000 |
14000 |
成活数 |
325 |
1336 |
3203 |
6335 |
8073 |
12628 |
成活的频率(精确到 ) |
0.813 |
0.891 |
0.915 |
0.905 |
0.897 |
0.902 |
由此估计这种幼树在此条件下移植成活的概率约是 (精确到 ).
从甲地到乙地有,,三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
公交车用时 公交车用时的频数 线路 |
合计 |
||||
59 |
151 |
166 |
124 |
500 |
|
50 |
50 |
122 |
278 |
500 |
|
45 |
265 |
167 |
23 |
500 |
早高峰期间,乘坐 (填“”,“ ”或“” 线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.
在一个不透明的小盒中装有 张除颜色外其它完全相同的卡片,这 张卡片中两面均为红色的只有3张.搅匀后,从小盒中任意抽出一张卡片记下颜色,再放回小盒中.通过大量重复抽取卡片实验,发现抽到两面均为红色卡片的频率稳定在0.3附近,可推算出 的值约为 .
若100个产品中有95个正品、5个次品,从中随机抽取一个,恰好是次品的概率是 .
在一个不透明的布袋中,红色、黑色、白色的球共有20个,除颜色外,形状、大小、质地等完全相同,小明通过大量摸球试验后发现摸到红色、黑色球的频率分别稳定在 和 ,则口袋中白色球的个数很可能是 个.
一个口袋中有 16 个白球和若干个黑球,在不允许将球倒出来的前提下,为估计口袋中黑球的
个数,采用了如下的方法:从口袋中摸出 1 个球记下颜色放回摇匀,不断重复上述过程多次,发现 摸到黑球的频率稳定在 0.8,根据上述数据,可估计口袋中大约有 个黑球.
某鱼塘里养了1600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为 .
表中记录了某种苹果树苗在一定条件下移植成活的情况:
移植的棵数 |
200 |
500 |
800 |
2000 |
12000 |
成活的棵数 |
187 |
446 |
730 |
1790 |
10836 |
成活的频率 |
0.935 |
0.892 |
0.913 |
0.895 |
0.903 |
由此估计这种苹果树苗移植成活的概率约为 .(精确到
在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为 .
在一个不透明的口袋中,装有除颜色外无其他差别的4个白球和 个黄球.某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色,放回摇匀,为一次摸球试验.记录摸球的次数与摸出白球的次数的列表如下:
摸球试验的次数 |
100 |
200 |
500 |
1000 |
摸出白球的次数 |
21 |
39 |
102 |
199 |
根据列表可以估计出 的值为 .
一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有 个白球.
试题篮
()