某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶纪录如下(单位:千米)
+10,-9,+7,-15,+6,-14,+4,-2
(1)A在岗亭何方?距岗亭多远?
(2)若摩托车行驶1千米耗油0.05升,这一天共耗油多少升?
图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为
如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,,求图4中所有圆圈中各数的绝对值之和.
(1)四个有理数a、b、c、d满足,则的最大值为 .
(2).符号“”表示一种运算,它对一些数的运算结果如下:
① ,,,,…
② ,,,,…
利用以上规律计算: .
(3)代数式的最小值为 .
如图是某汽车维修公司的维修点在环形公路上的分布图。公司在年初分配给A,B,C,D四个维修点某种配件各50件。在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次为多少?说明理由。(注:件配件从一个维修点调整到相邻维修点的调动件次为)
意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13…,现以这组数中的各个数作为正方形的长度构造正方形,再分别依次从左到右取2个,3个,4个,5个正方形拼成如下矩形并标记为①、②、③、④,相应矩形的周长如下表所示:
序号 |
① |
② |
③ |
④ |
周长 |
6 |
10 |
16 |
26 |
若按此规律继续作矩形,则序号为⑩的矩形周长是 。
在密码学中,你直接可以看到的内容为明文(真实文),对明文进行某种处理后得到的内容为密文.现有一种密码把英文的明文单词按字母分解,其中英文的26个字母(不论大小写)依次对应1,2,3,……26这26个自然数,见以下表格:
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
n |
o |
p |
q |
r |
s |
t |
u |
v |
w |
x |
y |
z |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
现给出一个公式:
将明文字母对应的数字x按以上公式计算得到密文字母对应的数字x',比如明文字母为g,g,所以明文字母g对应的密文字母为d.
按照上述规定,将明文good译成的密文是什么?写出你的计算过程;
先阅读下列材料,再解答后面的问题:
要求算式的值,我们可以按照如下方法进行:
设=S ① 则有2()= 2S
∴ = 2S ②
②-①得: = S ∴ = S
∴ 原式: =
㈠ 请你根据上述方法计算: = 。
㈡ 2008年美国的金融危机引发了波及全世界的经济危机,我国也在此次经济危机中深受影响,为此2009年我国积极理性的放宽信贷,帮助我国企业、特别是中小企业度过难关,尽最大努力减少我国的失业率。 某企业在应对此次危机时积极进取,决定贷款进行技术改造,现有两种方案, 甲方案: 一次性贷款10万元,第一年便可获利1万元,以后每年获利比前一年增加30%的利润;
乙方案: 每年贷款1万元,第一年可获利1万元,以后每年获利比前一年增加5千元;
两种方案的使用期都是10年,到期一次性归还本息. 若银行两种形式的贷款都按年息5%的复利计算,
试比较两种方案中,10年的总利润,哪种获利更多? ( 结果精确到0.01 )
(取1.0510 =" 1.629" , 1.310 =" 13.786" , 1.510 =" 57.665" )
( 注意:‘复利’的计算方法,例如:一次性贷款7万元,按年息5%的复利计算;⑴若1年后归还本息,则要还元。⑵若2年后归还本息,则要还元。⑶若3年后归还本息,则要还元。 )
阅读下列材料,并解答后面的问题:
∵=(1-), =(-), … ,=(-)
∴……+
=(1-)+-)+ … +-)
=
=
=
①在式子中,第五项为 ,第n项为 。
②解方程:=(有计算过程)
试题篮
()