优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 对称式和轮换对称式 / 解答题
初中数学

如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.

  • 题型:未知
  • 难度:未知

请分别画出下图中各图的所有对称轴.
(1)正方形       (2)正三角形         (3)相交的两个圆

  • 题型:未知
  • 难度:未知

如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).
(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;
(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.

  • 题型:未知
  • 难度:未知

如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)
(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD     ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是     
(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;
(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).

  • 题型:未知
  • 难度:未知

如图,△AOB是等边三角形,C为AB上一点,△OAC沿顺时针方向旋转后到达△OBD的位置.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果点E为OA的中点,那么经过上述旋转后,点E旋转到了什么位置?

  • 题型:未知
  • 难度:未知

画出△ABC关于x轴对称的图形△A1B1C1,并写出△A1B1C1的顶点坐标.

  • 题型:未知
  • 难度:未知

如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.
(1)请利用平移的知识求出种花草的面积.
(2)若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?

  • 题型:未知
  • 难度:未知

如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A、B、C、D分别在网格的格点上.

(1)请你在所给的网格中画出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称,其中点A′、B′、C′、D′分别是点A、B、C、D的对称点;
(2)在(1)的条件下,结合你所画的图形,直接写出线段A′B′的长度.

  • 题型:未知
  • 难度:未知

画图并填空:
(1)画出图中△ABC的高AD(标注出点D的位置);
(2)画出把△ABC沿射线AD方向平移3cm后得到的△A1B1C1
(3)根据“图形平移”的性质,得BB1=            cm,AC与A1C1的位置关系是:            

  • 题型:未知
  • 难度:未知

在△ABC中,∠C=90°,AC=6,BC=8,DE垂直平分AB,求BE的长.

  • 题型:未知
  • 难度:未知

在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.
(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.

  • 题型:未知
  • 难度:未知

某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.

(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.

  • 题型:未知
  • 难度:未知

如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.

(1)求∠ECD的度数;
(2)若CE=12,求BC长.

  • 题型:未知
  • 难度:未知

问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】
小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】
如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.
【探究应用】
如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)

  • 题型:未知
  • 难度:未知

如图,将三角形ABC绕点O旋转得到三角形A/B/C/,且∠AOB=300,∠AOB/=200,则
(1)点B的对应点是________________;
(2)线段OB的对应线段是____________;
(3)∠AOB的对应角是________________;
(4)三角形ABC旋转的角度是__________;

  • 题型:未知
  • 难度:未知

初中数学对称式和轮换对称式解答题