优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 对称式和轮换对称式 / 解答题
初中数学

设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下

表:(6分)

d、a、r之间关系
公共点的个数
d>a+r
 
d=a+r
 
a-r<d<a+r
 
d=a-r
 
d<a-r
 

所以,
当r<a时,⊙O与正方形的公共点的个数可能有         个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:(5分)

d、a、r之间关系
公共点的个数
d>a+r
 
d=a+r
 
a≤d<a+r
 
d<a
 


所以,当r=a时,⊙O与正方形的公共点个数可能有     个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=a;(5分)

  • 题型:未知
  • 难度:未知

找朋友,手拉手:
用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.
下面所给的三排图形都存在着某种联系,用线将它们连起来

  • 题型:未知
  • 难度:未知

(6分)
如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,以直线BC为对称轴作△ABC的轴对称图形,得到△A1BC,再将△A1BC绕着点B逆时针旋转90°,得到△A2BC1 ,请依此画出△A1BC,、△A2BC1

来源:2011届湖北省武汉市初三上学期调考测试数学卷
  • 题型:未知
  • 难度:未知

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴ ∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.本试卷锡     
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

  • 题型:未知
  • 难度:未知


(1)如图,画出△关于轴对称的图形
(2)若点在△上,写出点关于轴对称的对应点的坐标

  • 题型:未知
  • 难度:未知

如图,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中的直角),并分别写出所拼四边形的对角线的长.(只需写出结果即可)

  • 题型:未知
  • 难度:未知

如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为  ;用含t的式子表示点P的坐标为    ;(3分)
(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

  • 题型:未知
  • 难度:未知

如图9,已知直线的解析式为,它与轴、轴分别相交于两点,平行于直线的直线从原点出发,沿轴正方向以每秒个单位长度的速度运动,运动时间为秒,运动过程中始终保持,直线轴,轴分别相交于两点,线段的中点为,以为圆心,以为直径在上方作半圆,半圆面积为,当直线与直线重合时,运动结束.

两点的坐标;
的函数关系式及自变量的取值范围;
直线在运动过程中,
为何值时,半圆与直线相切?
是否存在这样的值,使得半圆面积?若存在,求出值,若不存在,说明理由.

  • 题型:未知
  • 难度:未知

在如图8所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题:

图中格点是由格点通过怎样变换得到的?
如果建立直角坐标系后,点的坐标为(),点的坐标为,请求出过点的正比例函数的解析式,并写出图中格点各顶点的坐标.

  • 题型:未知
  • 难度:未知

如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.

  • 题型:未知
  • 难度:未知

如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1.  

﹙1﹚将△ABC,△A1B1C1如图②摆放,使点A1与B重合,点B1在AC边的延长线上,连接CC1交BB1于点E.求证:∠B1C1C=∠B1BC.   

﹙2﹚若将△ABC,△A1B1C1如图③摆放,使点B1与B重合,点A1在AC边的延长线上,连接CC1交A1B于点F.试判断∠A1C1C与∠A1BC是否相等,并说明理由.

﹙3﹚写出问题﹙2﹚中与△A1FC相似的三角形                          .

  • 题型:未知
  • 难度:未知

如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1,,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以 (长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.

请解答下列问题:
(1)过A,B两点的直线解析式是  ▲ ;
(2)当t﹦4时,点P的坐标为  ▲  ;当t ﹦  ▲  ,点P与点E重合;
(3)
① 作点P关于直线EF的对称点P′. 在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?
② 当t﹦2时,是否存在着点Q,使得△FEQ ∽△BEP ?若存在, 求出点Q的坐标;
若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,写出△ABC的各顶点坐标,并画出△ABC关于Y轴的对称图形。

  • 题型:未知
  • 难度:未知

初中数学对称式和轮换对称式解答题