优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二元一次不定方程的应用 / 解答题
初中数学

为了参加2011年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.

  • 题型:未知
  • 难度:未知

在长方形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示。试求图中阴影部分的总面积。

  • 题型:未知
  • 难度:未知

一列火车从北京出发到达广州大约需要15小时。火车出发后先按原来的时速匀速行驶8小时后到达武汉,由于2009年12月世界时速最高铁路武广高铁正式投入运营,现在从武汉到广州火车的平均时速是原来的2倍还多50公里,所需时间也比原来缩短了4个小时。求火车从北京到武汉的平均时速和提速后武汉到广州的平均时速。

  • 题型:未知
  • 难度:未知

已右关于的方程组
(1)求这个方程组的解;(2)当取何值时,这个方程组的解大于不小于

  • 题型:未知
  • 难度:未知

某煤气公司要给用户安装管道煤气,现有600户申请了但还未安装的用户,此外每天还有新的申请。已知煤气公司每个小组每天安装的数量相同,且估计到每天申请安装的户数也相同,煤气公司若安排2个安装小组同时做,则60天可以装完所有新、旧申请;若安排4个安装小组同时做,则10天可以装完所有新旧申请。
(1)求每天新申请安装的用户数及每个安装小组每天安装的数量;
(2)如果要求在10天内安装完所有新、旧申请,但前6天只能派出2个安装小组安装,那么最后几天至少需要增加多少个安装小组同时安装,才能完成任务?

  • 题型:未知
  • 难度:未知

下图是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、……方程组n.

(1)将方程组1的解填入图中;
(2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中;
(3)若方程组的解是,求m、n的值,并判断该方程组是否符合(2)中的规律?

  • 题型:未知
  • 难度:未知

为了防控甲型H7N9流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.
(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?
(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且这次所需费用不多于1200元(不包括之前的780元),求甲种消毒液最多能再购买多少瓶?

  • 题型:未知
  • 难度:未知

某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元.
(1)每台电脑机箱、液晶显示器的进价各是多少元?
(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?

  • 题型:未知
  • 难度:未知

学校240名师生集体外出活动,准备租用45座大客车或30座小客车,共租用6辆. 据调查:租用1辆大车和2辆小车共需租车费1000元;租用2辆大车1辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若总租车费用不超过2300元,求最省钱的租车方案.

  • 题型:未知
  • 难度:未知

一家公司加工一批农产品,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购了农产品150吨,并用14天加工完这批农产品.根据题意,甲、乙两名同学分别列出的方程组(部分)如下:
甲:                       乙:
(1)根据甲、乙两名同学所列的方程组,请你在方框中补全甲、乙两名同学所列的方程组;
(2)求粗加工和精加工这批农产品各多少吨?

  • 题型:未知
  • 难度:未知

在解方程组时,由于粗心,甲看错了方程组中的a,而得到解为;乙看错了方程组中的b而得到解为
(1)求正确的a、b值;
(2)求原方程组的解。

  • 题型:未知
  • 难度:未知

某煤气公司要给用户安装管道煤气,现有600户申请了但还未安装的用户,此外每天还有新的申请。已知煤气公司每个小组每天安装的数量相同,且估计到每天申请安装的户数也相同,煤气公司若安排2个安装小组同时做,则60天可以装完所有新、旧申请;若安排4个安装小组同时做,则10天可以装完所有新旧申请。
①求每天新申请安装的用户数及每个安装小组每天安装的数量;
②如果要求在10天内安装完所有新、旧申请,但前6天只能派出2个安装小组安装,那么最后几天至少需要增加多少个安装小组同时安装,才能完成任务?

  • 题型:未知
  • 难度:未知

关于x、y的方程组有相同的解,求a、b的值。

  • 题型:未知
  • 难度:未知

瘦西湖风景区为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张120元,持票者每次进入瘦西湖风景区无需再购买门票;B类年票每张50元,持票者进入瘦西湖风景区时需再购买每次2元的门票。某游客一年中进入瘦西湖公园至少要多少次时,购买A类年票最合算?

  • 题型:未知
  • 难度:未知

某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,其中14吨每吨按政府补贴优惠价收费,但超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为吨,应交水费为y元,写出y与之间的函数关系式;
(3)小英家3月份用水24吨,她家应交水费多少元?

  • 题型:未知
  • 难度:未知

初中数学二元一次不定方程的应用解答题