如图,在平面直角坐标系中,,,,,……,以为对角线作第一个正方形,以为对角线作第二个正方形,以为对角线作第三个正方形,……,顶点,,,……都在第一象限,按照这样的规律依次进行下去,点的坐标为_________________.
老师问A、B、C、D、E五位学生:“昨天你们有几个人玩过游戏?”他们的回答分别为A:
没有人;B:一个人;C:二个人;D;三个人;E:四个人。老师知道:他们之中有人玩过
游戏,也有人没有玩过游戏。若没有玩过游戏的人说的是真话,那么他们5个人中有 个
人玩过游戏。
图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),…,则第n个图形的周长是( )
A.2n | B.4n |
C.2n+1 | D.2n+2 |
甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,
方差分别是,,,.在本次射击测试中,成绩最
稳定的是
A.甲 | B.乙 | C.丙 | D.丁 |
随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:,,,,则小麦长势比较整齐的试验田是 (填“甲”或“乙”)
如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=30°。
(1)将图1中的三角尺绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角尺绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第 秒时,边MN恰好与射线OC平行;在第 秒时,直线ON恰好平分锐角∠AOC。(直接写出结果);
(3)将图1中的三角尺绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:
(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?
(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?
答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)
图1 图2 图3 图4
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:
(1) 分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;
(2) 设AD=x,建立关于x的方程模型,求出x的值.
△ABC是一张等腰直角三角形纸板,∠C=Rt∠,AC=BC=2,
(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=;
(3)求第10次剪取后,余下的所有小三角形的面积之和.
如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.
如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是____________.
如图,已知抛物线经过O(0,0),A(4,0),B(3,)三点,连接AB,过点B作BC∥轴交该抛物线于点C.
求这条抛物线的函数关系式.
两个动点P、Q分别从O、A同时出发,以每秒1个单位长度的速度运动. 其中,点P沿着线段0A向A点运动,点Q沿着线段AB向B点运动. 设这两个动点运动的时间为(秒) (0<≤2),△PQA的面积记为S.
① 求S与的函数关系式;
② 当为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状;
是否存在这样的值,使得△PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由.
下列命题中,正确的是 ( )
A.四边相等的四边形是正方形 | B.四角相等的四边形是正方形 |
C.对角线相等的菱形是正方形 | D.对角线垂直且相等的四边形是正方形 |
如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2,的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(3,2)的点共有 个.
试题篮
()