如图,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)试求 , , 的坐标;
(2)将 绕 中点 旋转 ,得到 .
①求点 的坐标;
②判断四边形 的形状,并说明理由;
(3)在该抛物线对称轴上是否存在点 ,使 与 相似?若存在,请直接写出所有满足条件的 点的坐标;若不存在,请说明理由.
如图,甲、乙为两座建筑物,它们之间的水平距离 为 ,在 点测得 点的仰角 为 ,在 点测得 点的仰角 为 ,求这两座建筑物的高度(结果保留根号)
抛物线 经过点 ,顶点为 .
(1)求点 的坐标;
(2)设直线 与抛物线交于 、 两点(点 在点 的左侧).
①在抛物线的对称轴上是否存在点 .使 ?若存在,求出点 的坐标;若不存在,请说明理由;
②点 在直线 上,点 在抛物线上,当以 , , , 为顶点的四边形是平行四边形时,求点 的坐标.
某艺校音乐专业自主招生考试中,所有考生均参加了“声乐”和“器乐”两个科目的考试,成绩都分为五个等级.对某考场考生两科考试成绩进行了统计分析,绘制了如下统计表和统计图(不完整).
根据以上信息,解答下列问题:
(1)求表中 , , , 的值,并补全条形统计图;
(2)若等级 , , , , 分别对应10分,8分,6分,4分,2分,求该考场“声乐”科目考试的平均分.
(3)已知本考场参加测试的考生中,恰有两人的这两科成绩均为 ,在至少一科成绩为 的考生中,随机抽取两人进行面试,求这两人的两科成绩均为 的概率.
小强的爸爸从家骑自行车去图书馆借书,途中遇到了从图书馆步行回家的小强,爸爸借完书后迅速回家,途中追上了小强,便用自行车载上小强一起回家,结果爸爸比自己单独骑车回家晚到1分钟,两人与家的距离 (千米)和爸爸从家出发后的时间 (分钟)之间的关系如图所示.
(1)图书馆离家有多少千米?
(2)爸爸和小强第一次相遇时,离家多少千米?
(3)爸爸载上小强后一起回家的速度是多少?
如图,建筑物 的高为 ,在其正东方向有一个通信塔 ,在它们之间的地面点 , , 三点在一条直线上)处测得建筑物顶端 ,塔顶 的仰角分别为 和 ,在 处测得塔顶 的仰角为 ,则通信塔 的高度.
某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.
(1)商场第一次购入的空调每台进价是多少元?
(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于 ,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?
如图,抛物线 的顶点为 ,该抛物线与 轴交于 、 两点,与 轴交于点 ,且 ,直线 与 轴交于点 .
(1)求抛物线的解析式;
(2)证明: ;
(3)在抛物线的对称轴上是否存在点 ,使 是等腰三角形?若存在,请直接写出符合条件的 点坐标,若不存在,请说明理由.
试题篮
()