如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按
的路径运动,且速度为每秒1㎝,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长。
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按
的路径运动,且速度为每秒2㎝,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动。当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
仔细观察,探索规律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)试求25+24+23+22+2+1的值;
(2)写出22006+22005+22004+…+2+1的个位数.
有两个全等的等腰直角三角板ABC和EFG其直角边长均为6(如图1所示)叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转,旋转角
满足0<º
<90º,四边形CHGK是旋转过程中两块三角板的重叠部分(如图2).
(1)在上述旋转过程中,①BH与CK有怎样的数量关系?②四边形CHGK的面积是否发生变化?并证明你发现的结论.
(2)如图,连接KH,在上述旋转过程中,是否存在某一位置使△GKH的面积恰好等于△ABC面积的
?若存在,请求出此时KC的长度;若不存在,请说明理由.
如图,等腰梯形
中,AB∥DC,AD=BC=5,DC=7,AB=13,动点P从点A出发,以每秒2个单位的速度沿AD→DC→CB→BA向终点A运动,同时点Q从点B出发,以每秒1个单位的速度沿BA向终点A运动,设运动时间为t秒。

⑴求梯形的高为多少?
⑵分段考虑,当t为何值时,四边形PQBC为平行四边形时?
⑶在整个运动过程中,是否存在某一时刻,
与
重合?
如图,在梯形ABCD中,AD∥BC,AB=5,AD=6,DC=4,∠C=45º. 动点M从B点出发沿线段BC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿C→D→A运动,在CD上的速度为每秒个单位长度,在DA上的速度为每秒1个单位长度,当其中一个点到达终点是另一个点也随之停止运动.设运动的时间为t秒.
(1)求BC的长.
(2)当四边形ABMN是平行四边形时,求t的值.
(3)试探究:t为何值时,△ABM为等腰三角形.
如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.
(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;
(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为Scm2.
①求S关于t的函数关系式;
②(附加题)求S的最大值.
如图,在△
中,
,
,
,点
在
上运动,
交
于
,
于
,设
,梯形
的面积为
.
(1)求
关于
的函数表达式及自变量
的取值范围;
(2)当梯形
的面积为4时,求
的值;
(3)梯形
的面积是否有最大值,如果有,求出最大值;如果没有,请说明理由.
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
(1)求弦AB的长;
(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;
(3)记△ABC的面积为S,若
,求△ABC的周长.
(本题12分)
如图1,已知
,
,
.
是射线
上的动点(点
与点
不重合),
是线段
的中点.
(1)设
,
的面积为
,求
关于
的函数解析式,并写出函数的定义域;
(2)如果以线段
为直径的圆与以线段
为直径的圆外切,求线段
的长;
(3)连接
,交线段
于点
,如果以
为顶点的三角形与
相似,求线段
的长.
如图,已知平行四边形ABCD,
(1)试用三种方法将它分成面积相等的两部分。(保留作图痕迹,不写作法)
(2)由上述方法,你能得到什么一般性的结论?
(3)解决问题:有兄弟俩分家时,原来共同承包的一块平行四边形田地ABCD,现要进行平均划分,由于在这块地里有一口井P,如图所示,为了兄弟俩都能方便使用这口井,兄弟俩在划分时犯难了,聪明的你能帮他们解决这个问题吗?(保留作图痕迹,不写作法)
我们发现,用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题这种方法称为等面积法,这是一种重要的数学方法.请你用等面积法来探究下列两个问题:
(1)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,请你用它来验证勾股定理;
(2)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC= 4,BC=3,求CD的长度.
试验与探究:我们知道分数
写为小数即
,反之,无限循环小数
写成分数即
.一般地,任何一个无限循环小数都可以写成分数形式.现在就以
为例进行讨论:设
,由
…,可知,
7.777… —0.777… =7,即
,解方程得
于是得,
.
请仿照上述例题完成下列各题:
(1)请你能把无限循环小数
写成分数,即
=.
(2)你能化无限循环小数
为分数吗?请仿照上述例子求解之.
试题篮
()