某商场为了吸引顾客,设计了一个摸球获奖的箱子,箱子中共有20个球,其中红球2个,兰球3个,黄球5个,白球10个,并规定购买100元的商品,就有一次摸球的机会,摸到红、兰、黄、白球的(一次只能摸一个),顾客就可以分别得到80元、30元、10元、0元购物卷,凭购物卷仍然可以在商场购买,如果顾客不愿意摸球,那么可以直接获得购物卷10元.
(1)每摸一次球所获购物卷金额的平均值是多少?
(2)你若在此商场购买100元的货物,两种方式中你应选择哪种方式?为什么?
阅读材料:如图①,一扇窗户打开后用窗钩
可将其固定.
(1)这里所运用的几何原理是()
| A.三角形的稳定性 | B.两点之间线段最短 |
| C.两点确定一条直线 | D.垂线段最短 |
(2)如图②是图①中窗子开到一定位置时的平面图,若
,
,
=60cm,求点
到边
的距离.(结果保留根号)
如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC上,且与AB、BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).
在平面直角坐标系中,给定以下五点A(-2,0),B(1,0)C(4,0),D(-2,
),E(0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB(如图所示).
(1)问符合条件的抛物线还有哪几条?不求解析式,请用约定的方法一一表示出来;
(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.
某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:
⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?
⑵第三天12时这头骆驼的体温是多少?
⑶兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解析式
如图,把直角梯形
沿
方向平移得到梯形
,
与
相交于点
,
=20cm,
=5cm,
=4cm,图中阴影部分的面积与哪个四边形的面积相等,并求出阴影部分的面积
如图,若要在长32m,宽20m的长方形地面上修筑同样宽2米的两条道路,余下的部分修草坪,草坪的面积是多少?
某商场重新装修后,准备在大厅的主楼梯上铺设一种红色的地毯,已知地毯每平方米40元,主楼梯道的宽为3米,问买地毯至少需要多少元? 
如图,是一块钜形
的场地,长
=101米,宽
=52米,从
、
两处入口的中路宽都为1米,两小路汇合处路口宽为2米,其余部分种植草坪面积为___米2
如图
(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标。
(2)源源想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后的7个点的坐标。
如图 (1) ,将平行四边形ABCD向左平移2个单位长度,可以得到A’B’C’D’,画出平移后的图形,并指出其各个顶点的坐标
小红是某中学的七年级学生,放学后从学校骑自行车回家,学校在她现在位置的北偏东30°方向,距离此处1.5km的地方,她的家在她现在的位置的南偏西45°的方向,距离此处2km,邮局在她现在的位置的北偏西60°的方向,距离此处3km。根据这些信息画一张表示各处位置的简图
试题篮
()