优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

已知二次函数图象的顶点坐标为 A 1 4 ,且与x轴交于点 B 1 0

(1)求二次函数的表达式;

(2)如图,将二次函数图象绕x轴的正半轴上一点 P m 0 旋转 180 ° ,此时点AB的对应点分别为点CD

①连结ABBCCDDA,当四边形ABCD为矩形时,求m的值;

②在①的条件下,若点M是直线xm上一点,原二次函数图象上是否存在一点Q,使得以点BCMQ为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.

来源:2022年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,平行四边形ABCD中, D B 2 3 A B 4 A D 2 动点EF同时从A点出发,点E沿着ADB的路线匀速运动,点F沿着ABD的路线匀速运动,当点EF相遇时停止运动.

(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为 2 3 秒时,设CEDF交于点P,求线段EPCP长度的比值;

(2)如图2,设点E的速度为1个单位每秒,点F的速度为 3 个单位每秒,运动时间为x秒,△AEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?

(3)如图3,H在线段AB上且 A H = 1 3 H B MDF的中点,当点EF分别在线段ADAB上运动时,探究点EF在什么位置能使 E M H M ,并说明理由.

来源:2022年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,⊙ O 的半径为 1 A B 为⊙ O 外两点, A B = 1 .给出如下定义:平移线段 AB ,得到⊙ O 的弦 A ' B ' A ' , B ' 分别为点 A B 的对应点),线段 A A ' 长度的最小值称为线段 AB 到⊙ O 的"平移距离".

1 )如图,平移线段 AB 到⊙ O 的长度为 1 的弦 P 1 P 2 P 3 P 4 ,则这两条弦的位置关系是            ;在点 P 1 , P 2 , P 3 , P 4 中,连接点 A 与点         的线段的长度等于线段 AB 到⊙ O 的"平移距离";

2 )若点 A B 都在直线 y = 3 x + 2 3 上,记线段 AB 到⊙ O 的"平移距离"为 d 1 ,求 d 1 的最小值;

3 )若点 A 的坐标为 2 , 3 2 ,记线段 AB 到⊙ O 的"平移距离"为 d 2 ,直接写出 d 2 的取值范围.

来源:2020年北京市高级中等学校中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,二次函数经过 A - 2 , 0 B 2 , 2 C 0 , 2 三个点.

1 )求该二次函数的解析式.

2 )若在该函数图象的对称轴上有个动点 D ,求当 D 点坐标为何值时, ACD 的周长最小.

来源:2020年河北省保定市定兴县中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 2 x 轴于 A B 两点,交 y 轴于点 C ,且 OA = 2 OC = 8 OB ,点 P 是第三象限内抛物线上的一动点.

1 )求此抛物线的表达式;

2 )若 PC / / AB ,求点 P 的坐标;

3 )连接 AC ,求 Δ P A C 面积的最大值及此时点 P 的坐标.

来源:甘肃省金昌市2020年中考数学试题
  • 题型:未知
  • 难度:未知

如图 ,直线 l 经过点 4 0 且平行于 y 轴,二次函数 y a x 2 2 a x + c a c 是常数 a 0 的图象经过点 M ( 1 1 ) ,交直线 l 于点 N ,图象的顶点为 D ,它的对称轴与 x 轴交于点 C ,直线 DM DN 分别与 x 轴相交于 A B 两点.

1 )当 a 1 时,求点 N 的坐标及 AC BC 的值;

2 )随着 a 的变化, AC BC 的值是否发生变化?请说明理由;

3 )如图 E x 轴上位于点 B 右侧的点, B C 2 B E DE 交抛物线于点 F .若 F B F E ,求此时的二次函数表达式.

来源:2020年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的边 AB 长是方程 x 2 - 3 x - 18 = 0 的根,连接 BD DBC = 30 ° ,并过点 C CN BD ,垂足为 N ,动点 P 从点 B 以每秒 2 个单位长度的速度沿 BD 方向匀速运动到点 D 为止;点 M 沿线段 DA 以每秒 3 个单位长度的速度由点 D 向点 A 匀速运动,到点 A 为止,点 P 与点 M 同时出发,设运动时间为 t t > 0

1 )线段 CN = ______

2 )连接 PM MN ,求 Δ P M N 的面积 s 与运动时间 t 的函数关系式;

3 )在整个运动过程中,当 Δ P M N 是以 PN 为腰的等腰三角形时,直接写出点 P 的坐标.

来源:2020年黑龙江省中考数学试卷(龙东地区、农垦、森工用)
  • 题型:未知
  • 难度:未知

发现规律:

1 )如图①, ABC ADE 都是等边三角形,直线 BD , CE 交于点 F .直线 BD AC 交于点 H .求 BFC 的度数

2 )已知: ABC ADE 的位置如图②所示,直线 BD , CE 交于点 F .直线 BD AC 交于点 H .若 ABC = ADE = α ACB = AED = β ,求 BFC 的度数

应用结论:

3 )如图③,在平面直角坐标系中,点 O 的坐标为 ( 0 , 0 ) ,点 M 的坐标为 ( 3 , 0 ) N y 轴上一动点,连接 MN .将线段 MN 绕点 M 逆时针旋转 60 得到线段 MK ,连接 NK OK ,求线段 OK 长度的最小值

来源:2020年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC D 是边 BC 上一动点,连接 AD ,将 AD 绕点 A 逆时针旋转至 AE 的位置,使得 DAE + BAC = 180 °

(1)如图1,当 BAC = 90 ° 时,连接 BE ,交 AC 于点 F .若 BE 平分 ABC BD = 2 ,求 AF 的长;

(2)如图2,连接 BE ,取 BE 的中点 G ,连接 AG .猜想 AG CD 存在的数量关系,并证明你的猜想;

(3)如图3,在(2)的条件下,连接 DG CE .若 BAC = 120 ° ,当 BD > CD AEC = 150 ° 时,请直接写出 BD - DG CE 的值.

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = x 2 + bx + c 经过 A ( 0 , - 1 ) B ( 4 , 1 ) .直线 AB x 轴于点 C P 是直线 AB 下方抛物线上的一个动点.过点 P PD AB ,垂足为 D PE / / x 轴,交 AB 于点 E

(1)求抛物线的函数表达式;

(2)当 ΔPDE 的周长取得最大值时,求点 P 的坐标和 ΔPDE 周长的最大值;

(3)把抛物线 y = x 2 + bx + c 平移,使得新抛物线的顶点为(2)中求得的点 P M 是新抛物线上一点, N 是新抛物线对称轴上一点,直接写出所有使得以点 A B M N 为顶点的四边形是平行四边形的点 M 的坐标,并把求其中一个点 M 的坐标的过程写出来.

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

如果一个自然数 M 的个位数字不为0,且能分解成 A × B ,其中 A B 都是两位数, A B 的十位数字相同,个位数字之和为10,则称数 M 为"合和数",并把数 M 分解成 M = A × B 的过程,称为"合分解".

例如 609 = 21 × 29 ,21和29的十位数字相同,个位数字之和为10,

609 是"合和数".

又如 234 = 18 × 13 ,18和13的十位数相同,但个位数字之和不等于10,

234 不是"合和数".

(1)判断168,621是否是"合和数"?并说明理由;

(2)把一个四位"合和数" M 进行"合分解",即 M = A × B A 的各个数位数字之和与 B 的各个数位数字之和的和记为 P ( M ) A 的各个数位数字之和与 B 的各个数位数字之和的差的绝对值记为 Q ( M ) .令 G ( M ) = P ( M ) Q ( M ) ,当 G ( M ) 能被4整除时,求出所有满足条件的 M

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.

营养品信息表

营养成份

每千克含铁42毫克

配料表

原料

每千克含铁

甲食材

50毫克

乙食材

10毫克

规格

每包食材含量

每包单价

A 包装

1千克

45元

B 包装

0.25千克

12元

(1)问甲、乙两种食材每千克进价分别是多少元?

(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.

①问每日购进甲、乙两种食材各多少千克?

②已知每日其他费用为2000元,且生产的营养品当日全部售出.若 A 的数量不低于 B 的数量,则 A 为多少包时,每日所获总利润最大?最大总利润为多少元?

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻 R 1 R 1 与踏板上人的质量 m 之间的函数关系式为 R 1 = km + b (其中 k b 为常数, 0 m 120 ) ,其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻 R 0 的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为 U 0 ,该读数可以换算为人的质量 m

温馨提示:①导体两端的电压 U ,导体的电阻 R ,通过导体的电流 I ,满足关系式 I = U R

②串联电路中电流处处相等,各电阻两端的电压之和等于总电压

(1)求 k b 的值;

(2)求 R 1 关于 U 0 的函数解析式;

(3)用含 U 0 的代数式表示 m

(4)若电压表量程为 0 ~ 6 伏,为保护电压表,请确定该电子体重秤可称的最大质量.

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

问题:如图,在 ABCD 中, AB = 8 AD = 5 DAB ABC 的平分线 AE BF 分别与直线 CD 交于点 E F ,求 EF 的长.

答案: EF = 2

探究:(1)把"问题"中的条件" AB = 8 "去掉,其余条件不变.

①当点 E 与点 F 重合时,求 AB 的长;

②当点 E 与点 C 重合时,求 EF 的长.

(2)把"问题"中的条件" AB = 8 AD = 5 "去掉,其余条件不变,当点 C D E F 相邻两点间的距离相等时,求 AD AB 的值.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解答题