请用直尺、圆规作图,不写作法,但要保留作图痕迹.
已知:,直线及上两点,.
求作:,使点在直线的上方,且,.
如图,在正方形中,是边上一点,(与、不重合),连接,将沿所在的直线折叠得到,延长交于,连接,作,与的延长线交于点,连接.显然是的平分线,是的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于的角平分线),并说明理由.
汛期到来,山洪暴发.下表记录了某水库内水位的变化情况,其中表示时间(单位:,表示水位高度(单位:,当时,达到警戒水位,开始开闸放水.
0 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
16 |
18 |
20 |
|
14 |
15 |
16 |
17 |
18 |
14.4 |
12 |
10.3 |
9 |
8 |
7.2 |
(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.
(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.
(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到.
如图,是的直径,是上一点,过点作,交的延长线于,交于点,是的中点,连接.
(1)求证:是的切线.
(2)若,求证:.
鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿方向开挖隧道,为了加快施工速度,要在小山的另一侧、、共线)处同时施工.测得,,,求的长.
争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)
78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93
整理上面的数据得到频数分布表和频数分布直方图:
成绩(分 |
频数 |
5 |
|
11 |
|
2 |
回答下列问题:
(1)以上30个数据中,中位数是 ;频数分布表中 ; ;
(2)补全频数分布直方图;
(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.
如图,内接于,为直径,作交于点,延长,交于点,过点作的切线,交于点.
(1)求证:;
(2)如果,,求弦的长.
如图,点,,是直线与反比例函数图象的两个交点,轴,垂足为点,已知,连接,,.
(1)求直线的表达式;
(2)和的面积分别为,.求.
某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,部分),在起点处测得大楼部分楼体的顶端点的仰角为,底端点的仰角为,在同一剖面沿水平地面向前走20米到达处,测得顶端的仰角为(如图②所示),求大楼部分楼体的高度约为多少米?(精确到1米)
(参考数据:,,,,
某商场的运动服装专柜,对,两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:
第一次 |
第二次 |
|
品牌运动服装数件 |
20 |
30 |
品牌运动服装数件 |
30 |
40 |
累计采购款元 |
10200 |
14400 |
(1)问,两种品牌运动服的进货单价各是多少元?
(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?
学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:进行了抽样调查,并将抽查得到的数据分成5组,下面是未完成的频数、频率分布表和频数分布扇形图:
组别 |
课前预习时间 |
频数(人数) |
频率 |
1 |
2 |
||
2 |
0.10 |
||
3 |
16 |
0.32 |
|
4 |
|||
5 |
3 |
请根据图表中的信息,回答下列问题:
(1)本次调查的样本容量为 ,表中的 , , ;
(2)试计算第4组人数所对应的扇形圆心角的度数;
(3)该校九年级共有1000名学生,请估计这些学生中每天课前预习时间不少于的学生人数.
试题篮
()