如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l ,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q ,并修建两段直线型道路PB、QA .规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).
(1)若道路PB与桥AB垂直,求道路PB的长;
(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;
(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.
推荐试卷