(本小题满分12分)已知函数(为常数)。
(Ⅰ)函数的图象在点()处的切线与函数的图象相切,求实数的值;
(Ⅱ)设,若函数在定义域上存在单调减区间,求实数的取值范围;
(Ⅲ)若,对于区间[1,2]内的任意两个不相等的实数,,都有
成立,求的取值范围。
函数的图像与轴的交点个数为 ( )
A.一个 | B.至少一个 | C.至多两个 | D.至多一个 |
14分)某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,且出版的书可全部销售完. 经出版社研究决定,新书投放市场后定价为元/本(9≤≤11),预计一年的销售量为万本.
(1)求该出版社一年的利润(万元)与每本书的定价的函数关系式;
已知函数(其中a,b为实常数)。
(Ⅰ)讨论函数的单调区间:
(Ⅱ)当时,函数有三个不同的零点,证明::
(Ⅲ)若在区间上是减函数,设关于x的方程的两个非零实数根为,。试问是否存在实数m,使得对任意满足条件的a及t恒成立?若存在,求m的取值范围;若不存在,请说明理由。
已知二次函数
(1)若试判断函数零点个数;
(2)若对任意的,且<,(>0),试证明:
>成立。
(3)是否存在,使同时满足以下条件:①对任意,,且②对任意的,都有?若存在,求出的值,若不存在,请说明理由。
试题篮
()