优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 三面角、直三面角的基本性质
高中数学

a > 0 , b > 0 ,已知函数 f ( x ) = a x + b x + 1
(Ⅰ)当 a b 时,讨论函数 f ( x ) 的单调性;
(Ⅱ)当 x > 0 时,称 f ( x ) a , b 关于 x 的加权平均数.
(1)判断 f ( 1 ) , f ( b a ) , f ( b a ) 是否成等比数列,并证明 f ( b a ) f ( b a )
(2) a , b 的几何平均数记为 G .称 2 a b a + b a , b 的调和平均数,记为 H .若 H f ( x ) G ,求 x 的取值范围.

来源:2013年普通高等学校招生全国统一考试文科数学
  • 题型:未知
  • 难度:未知

已知函数,若
,则(   )

A.2 B.4 C.8 D.随值变化
  • 题型:未知
  • 难度:未知

下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(  )

A.y=cos 2x,x∈R
B.y=log2|x|,x∈R且x≠0
C.y=,x∈R
D.y=x3+1,x∈R
  • 题型:未知
  • 难度:未知

已知函数,若的交点在直线的两侧,
则实数的取值范围是 (   )

A. B.   C.   D.
  • 题型:未知
  • 难度:未知

给出下列四个命题:
①若,则的图象关于对称;
②若,则的图象关于y轴对称;
③函数
④函数y轴对称。正确命题的序号是     .

  • 题型:未知
  • 难度:未知

定义运算,如,令,则为(   )

A.奇函数,值域 B.偶函数,值域
C.非奇非偶函数,值域 D.偶函数,值域
  • 题型:未知
  • 难度:未知

已知,则的大小关系是(  )

A. B.
C. D.
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f(x)的图象恰好通过n(n∈N*)个整点,则称函数f(x)为n阶整点函数.有下列函数:
①f(x)=x+(x>0);②g(x)=x3;
③h(x)=()x;④φ()=lnx.
其中是一阶整点函数的是(  )

A.①②③④ B.①③④
C.④ D.①④
  • 题型:未知
  • 难度:未知

设函数f(x)的定义域为D,若存在非零实数l使得对于任意xM(MD),有xlD,且f(xl)≥f(x),则称函数f(x)为M上的l高调函数.现给出下列命题:
①函数f(x)=x是R上的1高调函数;
②函数f(x)=sin 2x为R上的π高调函数;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞).
其中正确的命题是________.(写出所有正确命题的序号)

  • 题型:未知
  • 难度:未知

已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是(  )

A.(-∞,-1) B.(-∞,2-1)
C.(-1,2-1) D.(-2-1,2-1)
  • 题型:未知
  • 难度:未知

定义在上的偶函数,满足,都有,且当时,.若函数上有三个零点,则的取值范围是         .

  • 题型:未知
  • 难度:未知

已知函数满足,且是偶函数,当时,,若在区间内,函数有三个零点,则实数k的取值范围是(  )

A. B. C. D.
  • 题型:未知
  • 难度:未知

用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用一个单位的水可洗掉蔬菜上残留农药的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数
⑴试规定的值,并解释其实际意义;
⑵试根据假定写出函数应满足的条件和具有的性质;
⑶设,现有单位量的水,可以清洗一次,也可以把水平均分成两份后清洗两次.试问用那种方案清洗后蔬菜上残留的农药量比较少?说明理由.

  • 题型:未知
  • 难度:未知

已知,则=(   )

A. B.    C.0   D.无法求
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数
(1)若对一切实数x恒成立,求实数a的取值范围。
(2)求在区间上的最小值的表达式。

  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质试题