优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的应用
初中数学

甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:

甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.

乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.

说明:①汽车数量为整数;②月利润 = 月租车费 - 月维护费;③两公司月利润差 = 月利润较高公司的利润 - 月利润较低公司的利润.

在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:

(1)当每个公司租出的汽车为10辆时,甲公司的月利润是   48000  元;当每个公司租出的汽车为   辆时,两公司的月利润相等;

(2)求两公司月利润差的最大值;

(3)甲公司热心公益事业,每租出1辆汽车捐出 a ( a > 0 ) 给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求 a 的取值范围.

来源:2021年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知四边形 ABCD 是边长为1的正方形,点 E 是射线 BC 上的动点,以 AE 为直角边在直线 BC 的上方作等腰直角三角形 AEF AEF = 90 ° ,设 BE = m

(1)如图,若点 E 在线段 BC 上运动, EF CD 于点 P AF CD 于点 Q ,连结 CF

①当 m = 1 3 时,求线段 CF 的长;

②在 ΔPQE 中,设边 QE 上的高为 h ,请用含 m 的代数式表示 h ,并求 h 的最大值;

(2)设过 BC 的中点且垂直于 BC 的直线被等腰直角三角形 AEF 截得的线段长为 y ,请直接写出 y m 的关系式.

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, A = 90 ° AB = 6 AC = 8 ,点 P ΔABC 所在平面内一点,则 P A 2 + P B 2 + P C 2 取得最小值时,下列结论正确的是 (    )

A.

P ΔABC 三边垂直平分线的交点

B.

P ΔABC 三条内角平分线的交点

C.

P ΔABC 三条高的交点

D.

P ΔABC 三条中线的交点

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,线段 AB = 10 ,点 C D AB 上, AC = BD = 1 .已知点 P 从点 C 出发,以每秒1个单位长度的速度沿着 AB 向点 D 移动,到达点 D 后停止移动.在点 P 移动过程中作如下操作:先以点 P 为圆心, PA PB 的长为半径分别作两个圆心角均为 60 ° 的扇形,再把两个扇形分别围成两个圆锥的侧面,设点 P 的移动时间为 t (秒 ) ,两个圆锥的底面面积之和为 S ,则 S 关于 t 的函数图象大致是 (    )

A.

B.

C.

D.

来源:2021年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

某快餐店销售 A B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份 A 种快餐的利润,同时提高每份 B 种快餐的利润.售卖时发现,在一定范围内,每份 A 种快餐利润每降1元可多卖2份,每份 B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是  元.

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 cm AD = 3 cm .动点 P 从点 A 出发沿折线 AB - BC 向终点 C 运动,在边 AB 上以 1 cm / s 的速度运动;在边 BC 上以 3 cm / s 的速度运动,过点 P 作线段 PQ 与射线 DC 相交于点 Q ,且 PQD = 60 ° ,连接 PD BD .设点 P 的运动时间为 x ( s ) ΔDPQ ΔDBC 重合部分图形的面积为 y ( c m 2 )

(1)当点 P 与点 A 重合时,直接写出 DQ 的长;

(2)当点 P 在边 BC 上运动时,直接写出 BP 的长(用含 x 的代数式表示);

(3)求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围.

来源:2021年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系 xOy 中,一次函数 y = 2 x 的图象 l 与函数 y = k x ( k > 0 , x > 0 ) 的图象(记为 Γ ) 交于点 A ,过点 A AB y 轴于点 B ,且 AB = 1 ,点 C 在线段 OB 上(不含端点),且 OC = t ,过点 C 作直线 l 1 / / x 轴,交 l 于点 D ,交图象 Γ 于点 E

(1)求 k 的值,并且用含 t 的式子表示点 D 的横坐标;

(2)连接 OE BE AE ,记 ΔOBE ΔADE 的面积分别为 S 1 S 2 ,设 U = S 1 - S 2 ,求 U 的最大值.

来源:2021年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

某超市从厂家购进 A B 两种型号的水杯,两次购进水杯的情况如表:

进货批次

A 型水杯(个     )

B 型水杯(个     )

总费用(元     )

100

200

8000

200

300

13000

(1)求 A B 两种型号的水杯进价各是多少元?

(2)在销售过程中, A 型水杯因为物美价廉而更受消费者喜欢.为了增大 B 型水杯的销售量,超市决定对 B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将 B 型水杯降价多少元时,每天售出 B 型水杯的利润达到最大?最大利润是多少?

(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个 A 型水杯可获利10元,售出一个 B 型水杯可获利9元,超市决定每售出一个 A 型水杯就为当地"新冠疫情防控"捐 b 元用于购买防控物资.若 A B 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时 b 为多少?利润为多少?

来源:2021年湖南省怀化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔOAB 的顶点坐标分别为 O ( 0 , 0 ) A ( 3 , 4 ) B ( 6 , 0 ) ,动点 P Q 同时从点 O 出发,分别沿 x 轴正方向和 y 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点 P 到达点 B 时点 P Q 同时停止运动.过点 Q MN / / OB 分别交 AO AB 于点 M N ,连接 PM PN .设运动时间为 t (秒 )

(1)求点 M 的坐标(用含 t 的式子表示);

(2)求四边形 MNBP 面积的最大值或最小值;

(3)是否存在这样的直线 l ,总能平分四边形 MNBP 的面积?如果存在,请求出直线 l 的解析式;如果不存在,请说明理由;

(4)连接 AP ,当 OAP = BPN 时,求点 N OA 的距离.

来源:2021年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 y = 1 2 x + 1 x y 轴分别交于点 B A ,顶点为 P 的抛物线 y = a x 2 - 2 ax + c 过点 A

(1)求出点 A B 的坐标及 c 的值;

(2)若函数 y = a x 2 - 2 ax + c 3 x 4 时有最大值为 a + 2 ,求 a 的值;

(3)连接 AP ,过点 A AP 的垂线交 x 轴于点 M .设 ΔBMP 的面积为 S

①直接写出 S 关于 a 的函数关系式及 a 的取值范围;

②结合 S a 的函数图象,直接写出 S > 1 8 a 的取值范围.

来源:2021年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度 y (单位: m ) 与它距离喷头的水平距离 x (单位: m ) 之间满足函数关系式 y = - 2 x 2 + 4 x + 1 喷出水珠的最大高度是    m

来源:2021年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

在“乡村振兴”行动中,某村办企业以 A B 两种农作物为原料开发了一种有机产品. A 原料的单价是 B 原料单价的1.5倍,若用900元收购 A 原料会比用900元收购 B 原料少 100 kg .生产该产品每盒需要 A 原料 2 kg B 原料 4 kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.

(1)求每盒产品的成本(成本 = 原料费 + 其他成本);

(2)设每盒产品的售价是 x ( x 是整数),每天的利润是 w 元,求 w 关于 x 的函数解析式(不需要写出自变量的取值范围);

(3)若每盒产品的售价不超过 a ( a 是大于60的常数,且是整数),直接写出每天的最大利润.

来源:2021年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

如今我国的大棚(如图 1 ) 种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体 A 处,另一端固定在离地面高2米的墙体 B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度 y (米 ) 与其离墙体 A 的水平距离 x (米 ) 之间的关系满足 y = - 1 6 x 2 + bx + c ,现测得 A B 两墙体之间的水平距离为6米.

(1)直接写出 b c 的值;

(2)求大棚的最高处到地面的距离;

(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为 37 24 米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?

来源:2021年湖北省随州市中考数学试卷
  • 题型:未知
  • 难度:未知

某商贸公司购进某种商品的成本为20元 / kg ,经过市场调研发现,这种商品在未来40天的销售单价 y (元 / kg ) 与时间 x (天 ) 之间的函数关系式为: y = 0 . 25 x + 30 1 x 20 x 为整数 35 ( 20 < x 40 x 为整数 ) ,且日销量 m ( kg ) 与时间 x (天 ) 之间的变化规律符合一次函数关系,如下表:

时间 x (天 )

1

3

6

10

 日销量 m ( kg )

142

138

132

124

(1)填空: m x 的函数关系为   

(2)哪一天的销售利润最大?最大日销售利润是多少?

(3)在实际销售的前20天中,公司决定每销售 1 kg 商品就捐赠 n 元利润 ( n < 4 ) 给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间 x 的增大而增大,求 n 的取值范围.

来源:2021年湖北省十堰市中考数学试卷
  • 题型:未知
  • 难度:未知

某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量 y (件 ) 是关于售价 x (元 / 件)的一次函数,如表仅列出了该商品的售价 x ,周销售量 y ,周销售利润 W (元 ) 的三组对应值数据.

x

40

70

90

y

180

90

30

W

3600

4500

2100

(1)求 y 关于 x 的函数解析式(不要求写出自变量的取值范围);

(2)若该商品进价 a (元 / 件),售价 x 为多少时,周销售利润 W 最大?并求出此时的最大利润;

(3)因疫情期间,该商品进价提高了 m (元 / 件) ( m > 0 ) ,公司为回馈消费者,规定该商品售价 x 不得超过55(元 / 件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求 m 的值.

来源:2021年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的应用试题