如图,在平面直角坐标系中,矩形的边长是的根,连接,,并过点作,垂足为,动点从点以每秒2个单位长度的速度沿方向匀速运动到点为止;点沿线段以每秒个单位长度的速度由点向点匀速运动,到点为止,点与点同时出发,设运动时间为秒.
(1)线段 ;
(2)连接和,求的面积与运动时间的函数关系式;
(3)在整个运动过程中,当是以为腰的等腰三角形时,直接写出点的坐标.
如图①,在中,,,点、分别在、边上,,连接、、,点、、分别是、、的中点,连接、、.
(1)与的数量关系是 .
(2)将绕点逆时针旋转到图②和图③的位置,判断与有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.
如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边,交于,两点,连接,.
(1)求证:四边形为平行四边形;
(2)若,,且,求的长.
如图,抛物线 交 轴于点 ,交过点 且平行于 轴的直线于另一点 ,交 轴于 , 两点(点 在点 右边),对称轴为直线 ,连接 , , .若点 关于直线 的对称点恰好落在线段 上,下列结论中错误的是
A. |
点 坐标为 |
B. |
|
C. |
|
D. |
|
如图,点 , 是直线 上的两点,过 , 两点分别作 轴的平行线交双曲线 于点 , .若 ,则 的值为
A. |
5 |
B. |
|
C. |
4 |
D. |
|
如图,是的直径,,,,与交于点,点是的中点,,交的延长线于点.
(1)求证:是的切线;
(2),交于点,求的长.
如图,在中,,平分交于点,点在上,以点为圆心,为半径的圆恰好经过点,分别交、于点、.
(1)试判断直线与的位置关系,并说明理由;
(2)若,,求阴影部分的面积(结果保留.
如图,点,分别在正方形的边,上,且.把绕点顺时针旋转得到.
(1)求证:.
(2)若,,求正方形的边长.
如图, 为 的直径,点 在 上, 与过点 的切线互相垂直,垂足为 .连接 并延长,交 的延长线于点 .
(1)求证: ;
(2)若 , ,求 的长.
试题篮
()