如图,由边长为1的小正方形构成的网格中,点 、 、 都在格点上,以 为直径的圆经过点 、 ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, 是边 上一点,以 为直径的 经过点 ,且 .
(1)请判断直线 是否是 的切线,并说明理由;
(2)若 , ,求弦 的长.
如图,在 中,点 为 的中点,弦 、 互相垂直,垂足为 , 分别与 、 相交于点 、 ,连接 、 .
(1)求证: 为 的中点.
(2)若 的半径为8, 的度数为 ,求线段 的长.
如图,已知线段 ,点 在平面直角坐标系 内.
(1)用直尺和圆规在第一象限内作出点 ,使点 到两坐标轴的距离相等,且与点 的距离等于 .(保留作图痕迹,不写作法)
(2)在(1)的条件下,若 , 点的坐标为 ,求 点的坐标.
如图,在 中, , , , 是 的中点,直线 经过点 , , ,垂足分别为 , ,则 的最大值为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在四边形中,,对角线的垂直平分线与边、分别相交于点、.
(1)求证:四边形是菱形;
(2)若,,求菱形的周长.
阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.
(1)特例感知:如图(一 ,已知边长为2的等边 的重心为点 ,求 与 的面积.
(2)性质探究:如图(二 ,已知 的重心为点 ,请判断 、 是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.
(3)性质应用:如图(三 ,在正方形 中,点 是 的中点,连接 交对角线 于点 .
①若正方形 的边长为4,求 的长度;
②若 ,求正方形 的面积.
如图1,在等腰直角三角形 中, , .点 是 的中点,以 为边作正方形 ,连接 , .将正方形 绕点 顺时针旋转,旋转角为 .
(1)如图2,在旋转过程中,
①判断 与 是否全等,并说明理由;
②当 时, 与 交于点 ,求 的长.
(2)如图3,延长 交直线 于点 .
①求证: ;
②在旋转过程中,线段 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
如图,在矩形中,,.分别以点,为圆心,以大于的长为半径画弧,两弧相交于点和.作直线分别与,,交于点,,,则 .
已知 是 斜边 的中点, , ,过点 作 使 , ,连接 并延长 到 ,使 ,连接 , , ,设 与 交于 , 与 交于 .
(1)如图1,当 , , 共线时,求证:
① ;
② ;
(2)如图2,当 , , 不共线时,连接 ,求证: .
试题篮
()