如图1,在矩形纸片 中, , ,折叠纸片使 点落在边 上的 处,折痕为 ,过点 作 交 于 ,连接 .
(1)求证:四边形 为菱形;
(2)当点 在 边上移动时,折痕的端点 、 也随之移动;
①当点 与点 重合时(如图 ,求菱形 的边长;
②若限定 、 分别在边 、 上移动,求出点 在边 上移动的最大距离.
某景区修建一栋复古建筑,其窗户设计如图所示.圆 的圆心与矩形 对角线的交点重合,且圆与矩形上下两边相切 为上切点),与左右两边相交 , 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为 ,根据设计要求,若 ,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为 .
如图,将矩形 沿 对折,点 落在 处,点 落在 边上的 处, 与 相交于点 ,若 , , ,则 周长的大小为 .
如图,矩形 的对角线 与 相交于点 ,延长 至点 ,使 ,连按 .
(1)求证:四边形 是平行四边形;
(2)若 , ,求四边形 的周长.
如图,四边形 是矩形 ,要在矩形 内作一个以 为边的正方形 ,某位同学的作法如下:
①作 的平分线 . 交 于点 ;
②以点 为圆心, 长为半径画弧,交 于点 ,连接 .
(1)求证:四边形 是正方形;
(2)若 ,求图中阴影部分的面积.
如图,四边形 为矩形,点 , 分别在 轴和 轴上,连接 ,点 的坐标为 , 的平分线与 轴相交于点 ,则点 的坐标为 .
如图,矩形 的顶点 在反比例函数 的图象上,顶点 , 在 轴上,对角线 的延长线交 轴于点 ,连接 ,若 的面积是6,则 的值为
A. B. C. D.
如图,在平面直角坐标系中,矩形 的边 、 分别在 轴、 轴上,点 在边 上,将该矩形沿 折叠,点 恰好落在边 上的 处.若 , ,则点 的坐标是 .
如图,点 是矩形 的边 上的点, ,将矩形沿着过点 的直线翻折后,点 、 分别落在边 下方的点 、 处,且点 、 、 在同一条直线上,折痕与边 交于点 , 与 交于点 .若 ,那么 的周长为
A. B. C. D.6
在四边形 中,点 为 边上的一点,点 为对角线 上的一点,且 .
(1)若四边形 为正方形.
①如图1,请直接写出 与 的数量关系 ;
②将 绕点 逆时针旋转到图2所示的位置,连接 , ,猜想 与 的数量关系并说明理由;
(2)如图3,若四边形 为矩形, ,其它条件都不变,将 绕点 顺时针旋转 得到△ ,连接 , ,请在图3中画出草图,并直接写出 与 的数量关系.
在矩形纸片 中, , , 是边 上的点,将纸片沿 折叠,使点 落在点 处,连接 ,当 为直角三角形时, 的长为 .
如图, 在射线 上顺次取两点 , ,使 ,以 为边作矩形 , ,将射线 绕点 沿逆时针方向旋转, 旋转角记为 (其 中 ,旋转后记作射线 ,射线 分别交矩形 的边 , 于点 , . 若 , ,则下列函数图象中, 能反映 与 之间关系的是
A .B .
C .D .
试题篮
()