如图,在边长为的正方形中,剪去一个边长为的小正方形(>),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于、的
恒等式为( )
A.; | B.; |
C.; | D. |
下列命题中正确的是( )
A.矩形的对角线相互垂直 | B.菱形的对角线相等 |
C.平行四边形是轴对称图形 | D.等腰梯形的对角线相等 |
已知菱形的对角线和相交于点,,,
(1)菱形的对角线和具有怎样的位置关系?
(2)若沿两条对角线把菱形剪开,分成四个三角形,利用这四个三角形可拼成一个可以证明勾股定理的图形.请你画出示意图,并证明勾股定理.
(3)若,,求
①菱形的边长和菱形的面积.(直接写出结论)
②求菱形的高.(直接写出结论)
如图,在梯形ABCD中,AD∥BC,AB="DC" ,过点D作DE∥AB 交BC于点E.
(1) 请你判断四边形ABED的形状,并说明理由;
(2) 当△DEC为等边三角形时,
① 求∠B的度数;
② 若AD=4,DC=3,求等腰梯形ABCD的周长.
如图,在□ABCD中,AEBC,E是垂足,如果∠B=50°,那么∠D、
∠C、∠1与∠2分别等于多少度?
如图,正方形网格中 ,每小格正方形边长为1,则格点△ABC中,边长为无理数的边数有( )
A.0条 | B.1条 | C.2条 | D.3条 |
如图,点P为□ABCD的边CD上一点,若△PAB、△PCD和△PBC的面积分别为
s1、s2和s3,则它们之间的大小关系是( )
A. S3=S1+S2 B. 2S3=S1+S2 C. S3>S1+S2 D. S3<S1+S2
如图,平面直角坐标系中,矩形的顶点在原点,点在轴的正半轴上,点在轴的正半轴上.已知,,是的中点,是的中点.
(1)分别写出点、点的坐标;
(2)过点作交轴于点,求点的坐标;
(3)在线段上是否存在点,使得以点、、为顶点的三角形是等腰三角形,若存在,求出点的坐标;若不存在,请说明理由.
试题篮
()