如图,菱形 的顶点 , , 在 上,过点 作 的切线交 的延长线于点 .若 的半径为1,则 的长为
A.1B.2C. D.
如图, 的半径 , 是 上的动点(不与点 重合),过点 作 的切线 , ,连结 , .当 是直角三角形时,其斜边长为 .
如图, 是等边 的内切圆,分别切 , , 于点 , , , 是 上一点,则 的度数是
A. B. C. D.
已知:如图,在 中, , 与 相切于点 .求证: .小明同学的证明过程如下框:
证明:连结 , , , 又 , , . |
小明的证法是否正确?若正确,请在框内打“ ”;若错误,请写出你的证明过程.
如图, 是半圆 的直径, , 是半圆 上不同于 , 的两点, , 与 相交于点 . 是半圆 所在圆的切线,与 的延长线相交于点 .
(1)求证: ;
(2)若 ,求证: 平分 .
我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具 三分角器.图1是它的示意图,其中 与半圆 的直径 在同一直线上,且 的长度与半圆的半径相等; 与 垂直于点 , 足够长.
使用方法如图2所示,若要把 三等分,只需适当放置三分角器,使 经过 的顶点 ,点 落在边 上,半圆 与另一边 恰好相切,切点为 ,则 , 就把 三等分了.
为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.
已知:如图2,点 , , , 在同一直线上, ,垂足为点 , .
求证: .
在 中,弦 与直径 相交于点 , .
(Ⅰ)如图①,若 ,求 和 的大小;
(Ⅱ)如图②,若 ,过点 作 的切线,与 的延长线相交于点 ,求 的大小.
如图,四边形 是平行四边形,以点 为圆心, 为半径的 与 相切于点 ,与 相交于点 , 的延长线交 于点 ,连接 交 于点 .求 和 的度数.
如图, 是 的内接三角形, , .连接 并延长,交 于点 ,连接 .过点 作 的切线,与 的延长线相交于点 .
(1)求证: ;
(2)若 ,求线段 的长.
如图,等腰直角三角形 中, , ,以点 为圆心画弧与斜边 相切于点 ,交 于点 ,交 于点 ,则图中阴影部分的面积是
A. B. C. D.
试题篮
()