我们把由半椭圆与半椭圆合成的曲线称作“果圆”(其中)如图,设点是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是边长为2的等边三角,则a,c的值分别为( )
|
A. B. C. D.
已知抛物线上有两点
(1)当抛物线的准线方程为时,作正方形ABCD使得边CD直线方程为,求正方形
的边长;
(2)抛物线上一定点Px0,,y0)(y0>0),当PA与PB的斜率存在且倾斜角互补时,求证直线AB的斜率是非零常数.
如图所示,已知圆O1与圆O2外切,它们的半径分别为4、2,圆C与圆O1、圆O2外切.
(1)建立适当的坐标系,求圆C的圆心的轨迹方程;
(2)在(1)的坐标系中,若圆C的半径为3,求圆C的方程.
已知点直线相交于点M,且.
(1)求点的轨迹的方程;
(2)过定点作直线与曲线交于两点,的面积是否存在最大值,若存在,求出面积的最大值,若不存在,请说明理由.
已知函数,其中a∈R
(1)若函数在单调递增,求实数的取值范围
(2) 若曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,求函数f(x)的单调区间与极值.
已知中心在原点,焦点在轴的椭圆过点,且焦距为2,过点分别作斜率为的椭圆的动弦,设分别为线段的中点.
(1)求椭圆的标准方程;
(2)当,直线是否恒过定点?如果是,求出定点坐标.如果不是,说明理由.
试题篮
()