下列命题:①△ABC的三边分别为则该三角形是等边三角形的充要条件为;②数列的前n项和为,则是数列为等差数列的必要不充分条件;③在△ABC中,A=B是sin A=sin B的充分必要条件;④已知都是不等于零的实数,关于的不等式和的解集分别为P,Q,则是的充分必要条件,其中正确的命题是( )
A.①④ | B.①②③ | C.②③④ | D.①③ |
设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )
A.充要条件 |
B.充分不必要条件 |
C.必要不充分条件 |
D.既不充分也不必要条件 |
下列说法中,不正确的是( )
A.已知,命题“若,则”为真命题; |
B.命题“”的否定是:“”; |
C.命题“或”为真命题,则命题和命题均为真命题; |
D.“”是“”的充分不必要条件. |
数列{xn}满足x1=0,xn+1=-xn2+xn+c(n∈N*).
(1)证明:{xn}是递减数列的充分必要条件是c<0;
(2)求c的取值范围,使{xn}是递增数列.
给出下列四个命题, 其中正确的命题有 个.
(1)函数上的单调递增区间是;
(2)均为非零实数,集合,则“”是“”的必要不充分条件
(3)若为真命题,则也为真命题
(4) 命题的否定
A. | B. | C. | D. |
是定义在上的函数的导函数,,设命题:;命题:是函数的极值点,则是成立的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |
已知P={x|x2﹣8x﹣20≤0},S={x|1﹣m≤x≤1+m}
(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的取值范围;
(2)是否存在实数m,使x∈P是x∈S的必要条件,若存在,求出m的取值范围.
给出下列四个命题:
①命题“”的否定是“”;
②“”是“直线与直线相互垂直”的必要不充分条件;
③设圆与坐标轴有4个交点,分别为,则;
④关于的不等式的解集为,则.
其中所有真命题的序号是 .
已知命题“存在”,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”
(1)若“且”是真命题,求的取值范围;
(2)若是的必要不充分条件,求的取值范围。
试题篮
()