废品率和每吨生铁成本(元)之间的回归直线方程为,这表明 ( )
A.与的相关系数为2 |
B.与的关系是函数关系的充要条件是相关系数为1 |
C.废品率每增加1%,生铁成本增加258元 |
D.废品率每增加1%,生铁成本平均每吨增加2元 |
下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程=0.7x+0.35,那么表中m的值为( )
A.4 | B.3.15 | C.4.5 | D.3 |
两个变量与的回归模型中,分别选择了4个不同模型,它们的相关指数如下,其中拟合效果最好的模型是( )
A.模型1的相关指数为0.86 | B.模型2的相关指数为0.96 |
C.模型3的相关指数为0.73 | D.模型4的相关指数为0.66 |
某食品的保鲜时间 (单位:小时)与储藏温度 (单位: )满足函数关系 ( 为自然对数的底数, 为常数).若该食品在 的保鲜时间是 小时,在 的保鲜时间是小时,则该食品在 的保鲜时间是()
A. | 16小时 | B. | 20小时 | C. | 24小时 | D. | 21小时 |
若根据10名儿童的年龄 x(岁)和体重 y(㎏)数据用最小二乘法得到用年龄预报体重的回归方程是 y =" 2" x + 7 ,已知这10名儿童的年龄分别是 2、3、3、5、2、6、7、3、4、5,则这10名儿童的平均体重是(***)
A.17 ㎏ | B.16 ㎏ | C.15 ㎏ | D.14 ㎏ |
某车间加工零件的数量与加工时间的统计数据如下表:
零件数(个) |
10 |
20 |
30 |
加工时间(分钟) |
21 |
30 |
39 |
现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )
A.84分钟 B.94分钟 C.102分钟 D.112分钟
下列判断中不正确的是( )
A.为变量间的相关系数,值越大,线性相关程度越高 |
B.在平面直角坐标系中,可以用散点图发现变量之间的变化规律 |
C.线性回归方程代表了观测值、之间的关系 |
D.任何一组观测值都能得到具有代表意义的回归直线方程 |
下列函数中,随x(x>0)的增大,增长速度最快的是( )
A.y =1,x∈Z | B.y=x | C.y= | D.y= |
对具有线性相关关系的变量x,y有一组观测数据(xi,yi)( i=1,2,…,8),其回归直线方程是=x+a且x1+x2+…+x8=6,y1+y2+…+y8=3,则实数a的值是( )
A. | B. | C. | D. |
经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间与数学成绩进行数据收集如下:
x |
15 |
16 |
18 |
19 |
22 |
y |
102 |
98 |
115 |
115 |
120 |
由表中样本数据求得回归方程为,则点与直线的位置关系是( )
A.点在直线左侧 B.点在直线右侧 C.点在直线上 D.无法确定
为了评价某个电视栏目的改革效果,在改革前后分别从某居民点抽取了1000位居民进行调查,经过计算得K24.358,根据这一数据分析,下列说法正确的是( )
A.有95%的人认为该栏日优秀 |
B.有95%的人认为该栏目是否优秀与改革有关系 |
C.有95%的把握认为电视栏目是否优秀与改革有关系 |
D.没有理由认为电视栏目是否优秀与改革有关系 |
试题篮
()