某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.
(Ⅰ)求出;
(Ⅱ)利用合情推理的“归纳推理思想”归纳出与的关系式,
(Ⅲ)根据你得到的关系式求的表达式.
(本小题15分)
先阅读下列不等式的证法,再解决后面的问题:已知且,求证
证明:构造函数因为对一切,恒有,所以4-8,从而
(1)若,且,请写出上述结论的推广式;
(2)参考上述证法,对你的结论加以证明;
(3)若,求证.[
.已知f(x)=(x≠-,a>0),且f(1)=log162,f(-2)=1.
(1)求函数f(x)的表达式;
(2)已知数列{xn}的项满足xn=[1-f(1)][1-f(2)]…[1-f(n)],试求x1,x2,x3,x4;
(3)猜想{xn}的通项.
在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图所标边长,由勾股定理有。设想正方形换成正方体,把截线换成如图所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥,如果用,,表示三个侧面面积,表示截面面积,那么你类比得到的结论是 。
设是集合中所有的数从小到大排列成的数列,即,将数列各项按照上小下大,左小右大的原则写成如下的三角形数表:
(1)写出这个三角形数表的第四行、第五行;
(2)求.
(本小题满分10分)
(Ⅰ)证明:.
(Ⅱ)已知圆的方程是,则经过圆上一点的切线方程为,类比上述性质,试写出椭圆类似的性质.
(1)证明:当时,不等式成立;
(2)要使上述不等式成立,能否将条件“”适当放宽?若能,请放宽条件并简述理由;若不能,也请说明理由;
(3)请你根据(1)、(2)的证明,试写出一个类似的更为一般的结论,且给予证明.
观察数表
1
2 3 4
3 4 5 6 7
4 5 6 7 8 9 10
求:(1)这个表的第行里的最后一个数字是多少?
(2)第行各数字之和是多少?
试题篮
()