已知两个正数,可按规则扩充为一个新数,在中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.若,经过七次操作后扩充所得的数为(为正整数),则
在中,若,则外接圆半径.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为,则其外接球的半径=
若点在椭圆外,过点作该椭圆的两条切线的切点分别为,则切点弦所在直线的方程为.那么对于双曲线,类似地,可以得到一个正确的命题为“若点不在双曲线上,过点作该双曲线的两条切线的切点分别为,则切点弦所在直线的方程为 ”.
如图所示的三角形数阵叫“莱布尼兹调和三角形“,它们是由整数的倒数组成的,第n行有n个数且两端的数均为(n≥2),其余每个数是它下一行左右相邻两个数的和,如:=+,=+,=+,......,则第7行第4个数(从左往右数)为
将全体正奇数排成一个三角形数阵:
1
3 5
7 9 11
13 15 17 19
……
按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .
如图,在梯形中,.若,到与的距离之比为,则可推算出:.试用类比的方法,推想出下述问题的结果.在上面的梯形中,延长梯形两腰相交于点,设的面积分别为,且到与的距离之比为,则的面积与的关系是 .
如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则=·;如图2,若不在同一平面内的射线OP,OQ和OR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是
类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,
①各棱长相等,同一顶点上的任两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。
其中所有正确命题的序号是 。
设平面内有条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用表示这条直线交点的个数,则=______;当时,_____________________.(用表示)
试题篮
()