优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

如图,在正方体ABCD—A1B1C1D1中,若E是AD的中点,则直线A1B与直线C1E的位置关系是(   )w.

A.平行 B.相交
C.共面 D.垂直
来源:雅安中学2009—2010学年(下期)高二年级期中考试(5月)
  • 题型:未知
  • 难度:未知

下列说法中正确的个数有( )
①两平面平行,夹在两平面间的平行线段相等;
②两平面平行,夹在两平面间的相等的线段平行;
③两条直线被三个平行平面所截,截得的线段对应成比例;
④如果夹在两平面间的三条平行线段相等,那么这两个平面平行.

A.1个 B.2个 C.3个 D.4个
  • 题型:未知
  • 难度:未知










不在上),则是(     )

A.直角三角形 B.锐角三角形
C.钝角三角形 D.以上都有可能
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图1,在Rt中,,将沿折起到的位置,使,如图2.

(Ⅰ)求证: 平面
(Ⅱ)若,求平面与平面所成二面角的大小. 

  • 题型:未知
  • 难度:未知

如图BCDE是一个正方形,AB⊥平面BCDE,则四棱锥的侧面和底面中互相垂直的平面共有(    )

  • 题型:未知
  • 难度:未知

如图,在直三棱柱ADE—BCF中,面ABFE和面ABCD都是正方形,M为AB的中点,O为DF的中点.

证明:(1)OM∥平面BCF;
(2)平面MDF⊥平面EFCD.

  • 题型:未知
  • 难度:未知

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

  • 题型:未知
  • 难度:未知

已知是两条不同直线,是一个平面,则下列说法正确的是(  )

A.若.b,则
B.若,b,则
C.若,则
D.若,b⊥,则
  • 题型:未知
  • 难度:未知

如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.

  • 题型:未知
  • 难度:未知

若两个平面互相垂直,则下列命题中正确的是(  )

A.一个平面内的已知直线必垂直于另一个平面内的任意一条直线;
B.一个平面内的已知直线必垂直于另一个平面内的无数条直线;
C.一个平面内的任意一条直线必垂直于另一个平面;
D.过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
  • 题型:未知
  • 难度:未知

有三个命题:
①垂直于同一个平面的两条直线平行;
②∀x∈R,x4>x2
③命题“所有能被2整除的整数都是偶数”的否定是:所有能被2整除的整数都不是偶数.
其中正确命题的个数为(  )

A.0 B.1 C.2 D.3
  • 题型:未知
  • 难度:未知

在正方体上任意选择4个顶点,由这4个顶点可能构成如下几何体:
①有三个面为全等的等腰直角三角形,有一个面为等边三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是直角三角形的四面体;
④有三个面为不全等的直角三角形,有一个面为等边三角形的四面体.
以上结论其中正确的是________(写出所有正确结论的编号).

  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,的中点,是AC与的交点,将沿折起到图2中的位置,得到四棱锥

(Ⅰ)证明:平面
(Ⅱ)当平面平面时,四棱锥的体积为,求的值.

  • 题型:未知
  • 难度:未知

三条不重合的直线及三个不重合的平面,下列命题正确的是

A.若,则
B.若,则
C.若,则
D.若,则
  • 题型:未知
  • 难度:未知

已知直线,平面,且,给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
其中真命题的个数为(      )

A.1 B.2 C.3 D.4
来源:
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题