(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD=1,AB=,点E为PD的中点,点F在棱DC上移动。
(1)当点F为DC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点F在DC的何处,都有PF⊥ AE
(3)求二面角E-AC-D的余弦值。
如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求证:平面BDGH//平面AEF;
(Ⅲ)求多面体ABCDEF的体积.
如图,在三棱柱中,平面,,, ,分别是,的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面平面;
(Ⅲ)求直线与平面所成角的正弦值.
如图,四边形是正方形,平面,,,,,分别为,,的中点.
(1)求证:平面;
(2)求平面与平面所成锐二面角的大小.
如图,在三棱锥中,平面,,,、、分别为、、的中点,、分别为线段、上的动点,且有.
(1)求证:面;
(2)探究:是否存在这样的动点M,使得二面角为直二面角?若存在,求CM的长度;若不存在,说明理由.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.
(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1.
(本小题满分12分)如图,正四棱锥的底面是边长为的正方形,侧棱长是底面边长为倍,为底面对角线的交点,为侧棱上的点.
(1)求证:;
(2)为的中点,若平面,求证:平面.
(本小题满分13分)
如图5,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,,平面,点是的中点.
(1)求二面角的余弦值.
(2)求点到平面的距离.
试题篮
()