优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

已知四棱锥的三视图和直观图如下图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.是侧棱上的动点.

(1)求证:
(2)若的中点,求直线与平面所成角的正弦值.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,底面,,,分别是的中点,上,且.

(1)求证:平面;
(2)在线段上上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,四边形为矩形,平面,平面于点,且点上.

(1)求证:
(2)求四棱锥的体积;
(3)设点在线段上,且,试在线段上确定一点,使得平面.

  • 题型:未知
  • 难度:未知

(本小题共14分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=

(Ⅰ)若点M是棱PC的中点,求证:PA // 平面BMQ;
(Ⅱ)求证:平面PQB⊥平面PAD;
(Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值 .

  • 题型:未知
  • 难度:未知

如图在正三棱锥P-ABC中,侧棱长为3,底面边长为2,E为BC的中点,

(1)求证:BC⊥PA
(2)求点C到平面PAB的距离

  • 题型:未知
  • 难度:未知

(本小题满分14分)
如图6,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,,直线平面.

(1)证明:
(2)在上是否存在一点,使得∥平面,若存在,请确定点的位置,并证明之;若不存在,请说明理由;
(3)求点到平面的距离.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面ABCD为菱形,,Q为AD的中点,.

(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使平面MQB.

  • 题型:未知
  • 难度:未知

如图四棱锥中,底面是平行四边形,平面,垂足为上且的中点,四面体的体积为.

(1)求过点P,C,B,G四点的球的表面积;
(2)求直线到平面所成角的正弦值;
(3)在棱上是否存在一点,使,若存在,确定点的位置,若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,,平面底面分别是的中点,求证:

(1)底面
(2)平面

  • 题型:未知
  • 难度:未知

如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.

(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1

  • 题型:未知
  • 难度:未知

棱柱的所有棱长都为2,,平面⊥平面

(1)证明:
(2)求锐二面角的平面角的余弦值;
(3)在直线上是否存在点,使得∥平面,若存在求出的位置.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,正四棱锥的底面是边长为的正方形,侧棱长是底面边长为倍,为底面对角线的交点,为侧棱上的点.

(1)求证:
(2)的中点,若平面,求证:平面

  • 题型:未知
  • 难度:未知

(本小题满分13分)
如图5,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,平面,点的中点.

(1)求二面角的余弦值.
(2)求点到平面的距离.

  • 题型:未知
  • 难度:未知

如图,长方体中点.

(1)求证:
(2)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由;
(3)若二面角的大小为,求的长.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题