优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

如图:C、D是以AB为直径的圆上两点,在线段上,且 ,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上.

(I)求证平面ACD⊥平面BCD;
(II)求证:AD//平面CEF.

  • 题型:未知
  • 难度:未知

(本小题满分15分)如图,已知的直径,点上异于的一点,平面,且,点为线段的中点.

(Ⅰ)求证:平面
(Ⅱ)若,求直线与平面所成角的大小.

  • 题型:未知
  • 难度:未知

已知:求证:

  • 题型:未知
  • 难度:未知

如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.

(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.

  • 题型:未知
  • 难度:未知

已知直线直线,a,b异面,。求证:

  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面
ABCD,AE⊥BD,CB=CD=CF=1,

(1)求证:BD⊥平面AED;
(2)求B到平面FDC的距离.

  • 题型:未知
  • 难度:未知

如图,底面是矩形的四棱锥P—ABCD中AB=2,BC=,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD.
(1)证明:侧面PAB⊥侧面PBC;



 

 

(2)求侧棱PC与底面ABCD所成的角;

(3)求直线AB与平面PCD的距离.

  • 题型:未知
  • 难度:未知

如图,四边形ABCD为正方形,PD⊥平面ABCD,,AF⊥PC于点F,FE∥CD交PD于点E.

(1)证明:CF⊥平面ADF;
(2)若,证明平面

  • 题型:未知
  • 难度:未知

如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.

  • 题型:未知
  • 难度:未知

如图,在四棱台中,平面,底面是平行四边形,
(1)证明:
(2)证明:平面

  • 题型:未知
  • 难度:未知

如图,三棱柱中,侧棱平面为等腰直角三角形,,且分别是的中点.

(1)求证:平面
(2)求锐二面角的余弦值;
(3)若点上一点,求的最小值.

  • 题型:未知
  • 难度:未知

三棱锥P—ABC中,PO⊥面ABC,垂足为O,若PA⊥BC,PC⊥AB,求证:
(1)AO⊥BC          
(2)PB⊥AC

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在五面体中,四边形为正方形,,平面平面,且,,点G是EF的中点.

(Ⅰ)证明:
(Ⅱ)若点在线段上,且,求证://平面
(Ⅲ)已知空间中有一点O到五点的距离相等,请指出点的位置. (只需写出结论)

  • 题型:未知
  • 难度:未知

(本小题满分14分)
如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点的中点,点是边上的任意一点.

(1)求证:
(2)求二面角的平面角的正弦值.

  • 题型:未知
  • 难度:未知

如图已知:菱形所在平面与直角梯形所在平面互相垂直,分别是线段的中点.

(1)求证:平面平面;
(2)点在直线上,且//平面,求平面与平面所成角的余弦值。

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题