如图,三棱柱中,点
在平面
内的射影
在
上,
,
,
(1)证明:
(2)设直线与平面
的距离为
,求二面角
的大小.
如图,四棱锥的底面
是平行四边形,
,
,
分别是棱
的中点.
(1)证明平面
;
(2)若二面角为
,
①证明:平面平面
.
②求直线与平面
所成角的正弦值.
如图,四边形为矩形,四边形
为梯形,
∥
,
,且平面
平面
,
,点
为
的中点.
(1)求证:∥平面
;
(2)求三棱锥的体积;
(3)试判断平面与平面
是否垂直?若垂直,请证明;若不垂直,请说明理由.
如图,已知三棱柱的侧棱与底面垂直,且
,
,
,
,点
、
、
分别为
、
、
的中点.
(1)求证:平面
;
(2)求证:;
(3)求二面角的余弦值.
如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.
(1)求证:平面PBC⊥面PDC
(2)设E为PC上一点,若二面角B-EA-P的余弦值为-,求三棱锥E-PAB的体积.
(本小题满分12分)如图,四棱锥P—ABCD中,底面是直角梯形,
,
,
,侧面
底面
,且
为等腰直角三角形,
,M为AP的中点.
(I)求证:
(II)求证:平面
;
(III)求平面与平面
所成锐二面角的余弦值.
如图,在四棱锥中,
,
,
为正三角形,且平面
平面
.
(1)证明:;
(2)求二面角的余弦值.
如图,在四棱锥中,底面
是正方形,侧面
底面
,
,
分别为
,
中点,
.
(Ⅰ)求证:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一点
,使
平面
?若存在,指出点
的位置;若不存在,说明理由.
如图,在四棱锥中,底面
为正方形,
平面
,已知
,
为线段
的中点.
(1)求证:平面
;
(2)求二面角的平面角的余弦值.
如图,三棱柱中,
平面
,
,
,
.以
,
为邻边作平行四边形
,连接
和
.
(1)求证:∥平面
;
(2)求直线与平面
所成角的正弦值;
(3)线段上是否存在点
,使平面
与平面
垂直?若存在,求出
的长;若
不存在,说明理由.
如图,在四棱锥中,底面
为矩形,
.
(1)求证,并指出异面直线PA与CD所成角的大小;
(2)在棱上是否存在一点
,使得
?如果存在,求出此时三棱锥
与四棱锥
的体积比;如果不存在,请说明理由.
如图甲,是边长为6的等边三角形,
分别为
靠近
的三等分点,点
为边
边的中点,线段
交线段
于点
.将
沿
翻折,使平面
平面
,连接
,形成如图乙所示的几何体.
(1)求证:平面
(2)求四棱锥的体积.
·上海理)如图,在长方体ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,证明直线BC1平行于平面DA1C,并求直线BC1到平面D1AC的距离.
试题篮
()