如图1,在中,
,
,
,
、
分别为
、
的中点,连接
并延长交
于
,将
沿
折起,使平面
平面
,如图2所示.
(1)求证:平面
;
(2)求平面与平面
所成的锐二面角的余弦值;
(3)在线段上是否存在点
使得
平面
?若存在,请指出点
的位置;若不存在,说明理由.
如图,在边长为的菱形
中,
,点
,
分别是边
,
的中点,
,沿
将△
翻折到△
,连接
,得到如图的五棱锥
,且
.
(1)求证:平面
;
(2)求二面角的正切值.
(本小题满分12分)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为,求
.
(本小题满分12分)如图,三棱柱ABC—A1B1C1中,侧面ACC1A1是的菱形,且与底面ABC垂直,AC=CB=2,且AC⊥CB.
(Ⅰ)求证:AC1⊥面A1BC;
(Ⅱ)求直线A1B与面ABC所成角的正切值;
(Ⅲ)求二面角B—A1A—C的正切值.
(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD,PB=PD,
⊥
,
⊥
,
,
分别是
,
的中点,连结
.
求证:(1)∥平面
;
(2)⊥平面
.
(本小题满分14分)已知四棱锥中,
,底面
是边长为
的菱形,
,
.
(Ⅰ)求证:;
(Ⅱ)设与
交于点
,
为
中点,若二面角
的正切值为
,求
的值.
【原创】(本小题满分12分)如图,在四面体中,
,点
是
的中点,点
在线段
上, 且
.
(1)若∥平面
,求实数
的值;
(2)求证:平面平面
.
【原创】在三棱锥P-ABC中,D为AB的中点.
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.
(本小题满分10分)在如图所示的多面体中,四边形为正方形,四边形
是直角梯形,
,
平面
,
.
(1)求证:平面
;
(2)求平面与平面
所成的锐二面角的大小.
(本小题12分)第(1)小题5分,第(2)题7分
如图,在四棱锥中中,底面
为菱形,
,
,点
在线段
上,且
,
为
的中点.
(1)求证:平面
;
(2)若平面平面
,求三棱锥
的体积;
如图所示,在三棱锥中,
,平面
⊥平面
,
.
(1)求证:平面
;
(2)求直线与平面
所成角的正弦值.
如图,在三棱锥中,
平面
,
,
,
、
、
分别为
、
、
的中点,
、
分别为线段
、
上的动点,且有
.
(1)求证:面
;
(2)探究:是否存在这样的动点M,使得二面角为直二面角?若存在,求CM的长度;若不存在,说明理由.
(本小题满分12分)如图,已知三棱柱ABC-A'B'C'侧棱垂直于底面,AB="AC," ∠BAC=900,点M,N分别为A'B和B'C'的中点.
(Ⅰ)证明:MN//平面AA'C'C;
(Ⅱ)设AB=AA',当A为何值时,CN⊥平面A'MN,试证明你的结论.
试题篮
()