如图所示,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,EF∩AC=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到五棱锥P﹣ABFED,且,PB=
.
(1)求证:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的正切值.
如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.
(Ⅰ)求证:平面CBE⊥平面CDE;
(Ⅱ)求二面角C—BE—F的余弦值.
(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD=1,AB=,点E为PD的中点,点F在棱DC上移动。
(1)当点F为DC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点F在DC的何处,都有PF⊥ AE
(3)求二面角E-AC-D的余弦值。
(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,,
(1)证明:平面平面
;
(2)若,
,令AE与平面ABCD所成角为
,且
,求该四棱锥
的体积.
(本小题满分12分)在三棱锥中,
,
,点
在棱
上,且
.
(Ⅰ)试证明:;
(Ⅱ)若,过直线
任作一个平面与直线
相交于点
,得到三棱锥
的一个截面
,求
面积的最小值;
(Ⅲ)若,求二面角
的正弦值.
如图所示,已知ABCD为梯形,,且
,M为线段PC上一点.
(1)当时,证明:
;
(2)设平面,证明:
(3)当平面MBD将四棱锥恰好分成两个体积体积相等的几何体时,试求
的值.
如图,在三棱锥底面ABC,且SB=
分别是SA、SC的中点.
(Ⅰ)求证:平面平面BCD;
(Ⅱ)求二面角的平面角的大小.
(本小题满分14分)已知四棱锥的底面
为菱形,且
,
,
与
相交于点
.
(Ⅰ)求证:底面
;
(Ⅱ)求直线与平面
所成角的正弦值;
(Ⅲ)若是
上的一点,且
,求
的值.
(本小题共14分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=
.
(Ⅰ)若点M是棱PC的中点,求证:PA // 平面BMQ;
(Ⅱ)求证:平面PQB⊥平面PAD;
(Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值 .
(本小题满分12分)如图,正四棱锥的底面是边长为
的正方形,侧棱长是底面边长为
倍,
为底面对角线的交点,
为侧棱
上的点.
(1)求证:;
(2)为
的中点,若
平面
,求证:
平面
.
试题篮
()