优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

如图,在四棱锥中,底面为直角梯形,垂直于底面分别为的中点.

(1)求证:
(2)求点到平面的距离.

  • 题型:未知
  • 难度:未知

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于B,构成一个三棱锥(如图所示).

(Ⅰ)在三棱锥上标注出点,并判别MN与平面AEF的位置关系,并给出证明;
(Ⅱ)是线段上一点,且,问是否存在点使得,若存在,求出的值;若不存在,请说明理由;
(Ⅲ)求多面体E-AFNM的体积.

  • 题型:未知
  • 难度:未知

如图,已知在侧棱垂直于底面的三棱柱中,,且,点中点.

(1)求证:平面⊥平面
(2)若直线与平面所成角的正弦值为
求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,四棱柱的底面是平行四边形,且底面°,点中点,点中点.

(Ⅰ)求证:平面平面
(Ⅱ)设二面角的大小为,直线与平面所成的角为,求的值.

  • 题型:未知
  • 难度:未知

如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 试判断直线CD与平面PAD是否垂直,并简述理由;
(II)求证:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.

  • 题型:未知
  • 难度:未知

某个实心零部件的形状是如下图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱.

(1)证明:直线平面
(2)现需要对该零部件表面进行防腐处理.已知(单位:),每平方厘米的加工处理费为元,需加工处理费多少元?

  • 题型:未知
  • 难度:未知

如图,长方体中点.

(1)求证:
(2)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由;
(3)若二面角的大小为,求的长.

  • 题型:未知
  • 难度:未知

三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若PA=,PC与侧面APB所成角的余弦值为,PB与底面ABC成60°角,求二面角B―PC―A的大小。

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四面体A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.

(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C−BM−D的大小.

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC的中点.

(1)证明:PA//平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.

  • 题型:未知
  • 难度:未知

如图,在四棱柱中,已知平面,且

(1)求证:;
(2)在棱BC上取一点E,使得∥平面,求的值.

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E为PA的中点.

(1)证明:DE∥平面PBC;
(2)证明:DE⊥平面PAB.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,平面ABCD,底面ABCD是菱形,.

(1)求证:平面PAC;
(2)若,求所成角的余弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题